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Abstract 

 

The variogram model used in estimation and/or simulation is unquestionably important.  

Quantifying and assessing the variogram model with less uncertainty result in reasonable 

models and simulations.  In real case when the true variogram is not known, the only 

thing that can help us to quantify the true variogram with associated uncertainty is our 

data. In the case of regularly gridded data calculating experimental variogram is much 

easier than the case of irregular data set; in this latter case some tolerance parameters 

should be defined to have enough data pairs for calculating a reliable variogram.  

These tolerance parameters can be optimized by minimizing a well defined penalty 

function that accounts for the difference in the fitted variogram and the assumed to be 

true variogram. This work gives a reasonable tool to assess the experimental variogram 

with less uncertainty. 
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Chapter 1 

Introduction 

 
One of the simple applications of geostatistics in earth sciences data is to estimate the 

value of the spatial variable at unsampled location. This estimation at unsampled location 

acts as the basis for other geostatistical techniques (such as uncertainty quantification and 

simulation). It uses spatial correlation of the variable over the whole domain of study.  

Assume that ( ){ };Z A∈u u  is a random function model (where Z(u) is a random 

variable) which represents the value of the variable at all of the locations of interest, u, 

within the domain A. In reality we do not know for certain ( ){ };Z A∈u u . Our goal is to 

characterize it with the associated uncertainty. What is available to us in reality is a data 

set which represents the variable at selected locations in the domain.  

Geostatistics helps to characterize the full model from the available data with associated 

uncertainty. The variogram is a spatial correlation function that is later used to estimate 

the random function at unsampled location. It gives information about how dissimilar the 

value of the variable at one location is to another location separated by a lag vector h. 

There always exists a true variogram but with real data, it is unknown. In real case we 

have to use the data to estimate the variogram. 

 

1.1 Background on Variogram 

The variogram is a two-point statistic that spatially relates two random variables (RV), 

Z(u) and Z(u+h): 
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{ }22 ( ) [ ( ) ( )]E Z Zγ = −h u u + h ………………………………………………………..(1.1) 

where u and h are location and lag vectors, respectively, in domain A.  Matheron (1965) 

first proposed a method-of-moments approach to approximate the variogram: 

[ ]
( )

2

1

1ˆ2 ( ) ( ) ( )
( )

γ
=

= −∑
kN

k i i k
ik

z z
N

h

h u u + h
h

….…….……………..……………………..(1.2) 

where ( )kN h is the number of pairs of data separated by a vector hk, k is the lag number 

which is defined based on some tolerance parameters that will be explained later,  

k=1,…,K lags. kh  is the mean of the separation distance between the data points of the kth 

lag. The experimental variogram can be calculated for all of the directions but practically 

it is calculated for principal directions of continuity (major, minor and vertical). 

One can relate each point on a variogram plot to an h-scatterplot, which shows all 

possible pairs of data values whose locations are separated by a certain distance vector h.  

Journel (1989) described the calculation of the variogram from this h-scatterplot as 

calculating the moment of inertia about the 45º line (see Figure 1.1). 

 

Figure 1.1.  Moment of inertia interpretation of the variogram based on an h-scatterplot.  

(Redrawn from Goovaerts, 1997) 

Based on the distribution of the cloud of points on an h-scatterplot, we can tell how 

similar the data values are over a certain distance in a particular direction (as defined by 

the lag vector h). If the data values at locations separated by h are similar, the pairs will 

plot close to a 45◦ line.  We naturally expect that this cloud of points will show little 
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dispersion at small lag distances, but as lag distance increases, this cloud of paired values 

is expected to increase in dispersion.  This notion of dissimilarity (or dispersion) is neatly 

captured by the variogram. 

The number of pairs available for computing the variogram depends on the lag distance. 

For regularly spaced samples, as the lag separation gets larger there are fewer points, so 

the method-of-moments approximation for the variogram is less precise at larger lag 

distances.  If there are n observed data, then there are ( ) 2/1−nn  unique pairs of 

observations taken over all possible lag distances. Thus, even a data set of moderate size 

generates a large number of pairs. Figure 1.2 shows a few different lag distances in the 

case of regular spaced data for calculating the experimental variogram.  We can see that 

depending on the direction, the lag spacing considered, and the size of the regular grid, 

the number of pairs used for calculating the variogram can be quite different. 

In practice, data are rarely exactly regularly spaced.  Sampling campaigns may target 

nominal drillhole/well spacing; however, certain regions of the deposit/reservoir are 

inevitably more densely drilled as they provide more information about the available 

resource.  As such, real data are irregularly spaced and the paired information used in 

calculating the experimental variogram is based on approximate lag separation distances.  

Therefore in calculating the experimental variogram in the real case where the data are 

not on a regular grid some tolerance parameters should be defined to have enough data 

for calculating reliable variogram with more data pairs (Deutsch and Journel, 1998). 

Even after the variogram is numerically calculated, we must still fit the experimental 

points with a positive semi-definite variogram model.  This model is then used in 

subsequent estimation and/or simulation.  Theoretically, we are not constrained to 

consider any set of models so long as positive semi-definiteness of the resulting model is 

ensured.  Practically, this can be quite prohibitive given the challenges associated to 

validating that this positive semi-definiteness condition is guaranteed for all directions 

and all distances.  As a result, there are a set of theoretically validated models that are 

widely adopted including the nugget, spherical, exponential and Gaussian models.  These 

can be linearly combined in an infinite number of ways to fit most experimental 
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variograms. Gringarten and Deutsch (2001) provide an extensive discussion on 

variogram interpretation and some guidelines on variogram modelling. 

 

 

Figure 1.2.  Different lag distances in the case of regular spaced data: h=1 taken vertically yields 

40 pairs (top left); h=1 taken horizontally results in 42 pairs (top right); h=2 in the horizontal 

direction will give 36 pairs (bottom left); and h=3 in the horizontal direction results in 30 pairs 

(bottom right). 

 

Of course, the uncertainty in calculating an experimental variogram is carried forward 

and somehow resolved by the user when the experimental points are fit with a variogram 

model. The variogram model is required for all distance and direction vectors h. The 

experimental variogram calculation gives variogram values at specific lag distances and 

directions (usually along the principal directions of continuity), (Deutsch 2002). To build 

the geostatistical models, we need to have a variogram function for all lag distances and 

directions. There are some variogram models commonly used in practice, i.e. the nugget 

effect, spherical, exponential, Gaussian, etc (Deutsch 2002). These models can be used to 

fit the experimental variogram values.  
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Specifically there are some key components of the fit that are important (Goovaerts, 

1997): 

• Although the value of the variogram for h=0 is strictly zero, short scale variability 

may cause sample values separated by extremely small distances (lag) to be quite 

dissimilar. This results in an apparent vertical intercept on the variogram plot that 

is often referred to as the nugget effect. 

• For a stationary random function, the limit of dissimilarity or the variogram value 

at which the variogram points appear to converge to at large lag distances is 

referred to as the sill.  We can also interpret the sill as the value at which paired 

data are no longer correlated to each other, or C(h)=0 where C(h) is the 

covariance of pairs of data separated by h.  The well established relationship 

between the variogram, covariance and variance, ( ) ( ) ( )γ = −C Ch 0 h , where 

C(0) represents the variance, demonstrates that the sill of the variogram is 

equivalent to the variance of the data: 

( ) 2σ=C 0  

• The range is the lag distance at or near which the variogram reaches the sill; 

beyond that distance the corresponding correlation coefficient is zero. 

It should be noted that throughout this thesis first and second order stationarity is 

assumed. These two types of stationarity assumption are defined in chapter 2. There is 

also a brief explanation of decision of stationarity in chapter 2. 

 

1.2 Introductory example 

In this section an introductory example will be presented to show the importance of 

defining the right parameters for variogram calculation. To understand better the problem 

for optimizing and defining the reasonable tolerance parameters a synthetic data set is 

considered with a known variogram model. To have this synthetic data set an 

unconditional sequential Gaussian simulation is performed with a known isotropic 
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variogram with a single spherical structure with nugget effect of 0.05 and with field size 

of 1024x1024, then 128 data points are picked randomly from this simulated field. The 

locations of the data points are shown in Figure 1.3. 

To get a range for reasonable values for lag separation distance the distribution of the 

distance to nearest sample can be considered. Figure 1.4 shows the probability density 

function and cumulative distribution function of the minimum distance between data 

points. It shows that between the unit lag distance of 30 and 40, more data pairs can be 

found, but this tolerance parameter should be optimized. 

 

Figure 1.3.  Locations of synthetic data set, the values are in Gaussian units 

Figure 1.5 shows different experimental variogram plots for different tolerance 

parameters. Each of these cases shows different variogram from a unique data set. 

Choosing optimal tolerance parameters will affect on variogram modelling and choosing 

a right variogram model. 
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Figure 1.4.  Probability density function and cumulative distribution function for the minimum 

distance from wells 

 

 

Figure 1.5.  Experimental variogram points for different unit lag distances and lag tolerances, the 

tolerance ratio is the ratio between the lag tolerance and the unit lag distance 
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1.3 Outline of the thesis 

In this study a decision support system will be introduced to improve variogram 

calculation and modelling. The goal is to model the experimental variogram in such a 

way that it gets closer to the true variogram which is in almost all of the cases is 

unknown.  

In chapter 2 the theoretical issues related to the variogram calculations and fitting will be 

discussed.  The focus is more on defining all of the parameters that affect the calculation 

of the variogram. These parameters are directions and tolerance parameters which consist 

of unit lag distance, lag tolerance, angle tolerance (vertical, horizontal) and the bandwidth 

(vertical, horizontal). The rest of the chapter is an introduction to variogram fitting, it is 

considered in this chapter because the following chapters largely use automatic 

variogram fitting. 

In chapter 3 the emphasis is on defining the optimal tolerance parameters based on the 

data values and their locations. The idea of optimizing the tolerance parameters will be 

presented in detail, the proposed methodology is to define a penalty function which is 

function of these parameters and try to find the point where the penalty is minimized with 

respect to the variogram calculation parameters. The implementation aspects regarding 

two and three dimensional cases will be discussed.  

In chapter 4 a case study will be presented. Real 2D and 3D data sets are used to test the 

optimization technique and quantify the optimal tolerance parameters.  

In chapter 5, the conclusions and future work for the proposed methodology will be 

discussed. 
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Chapter 2 

Variogram Calculations 

 
Throughout this thesis, h is the lag distance which is a vector, h is the unit lag distance 

and htol is the unit lag tolerance. Both of the unit lag distance, h, and the unit lag 

tolerance, htol, are scalar quantities. 

 

2.1 Spatial relationship 

Spatial relationship can be used to find out how neighboring values are related. There are 

different types of spatial correlation functions which define the spatial relationship. They 

are covariance, correlogram, traditional variogram, traditional cross variogram (in the 

case of two or more variables), general relative variogram, pairwise relative variogram, 

madogram, rodogram, and the traditional variogram for transformed variables, (e.g. 

variogram of logarithms of the variable, variogram for indicator variables and variogram 

for Gaussian variables). The definition for all of the spatial correlation functions will be 

presented in this chapter. Some of these spatial functions are named as robust variogram 

estimator (e.g. general and pairwise relative variogram). Among these spatial correlation 

functions, the traditional variogram is the most commonly used spatial relationship in 

geostatistics. In this study the focus is on the traditional variogram. The same 

methodology which will be presented in subsequent chapters can be used for other spatial 

correlation functions, but the traditional variogram function should be replaced with 

appropriate spatial correlation function. 

In practice, several difficulties are encountered in estimating the variogram. These 

considerations are discussed below.  
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Decision of stationarity 

The assumption of stationarity requires that the proposed geostatistical model based on 

our sampled data, can adequately describe the behaviour of the population. The goal is to 

infer the population based on the sample data. So, we should make an informed decision 

regarding what information we can use to describe the region of interest, this is called the 

decision of stationarity (Kelkar and Perez, 2002). In geostatistical study two kinds of 

stationarities can be defined, they are first order and second order stationarities. The first 

order stationarity is as below: 

( ){ } ( ){ }E Z E Z m= + =h u h …………………………………………………………(2.1) 

It means that the expected value of a random variable at u is the same as the expected 

value of a random variable h lag distance away. Therefore first order stationarity means 

that the expected value across the region is the same. If we divide the region into small 

subregions and calculate the mean within each subregion then the means should be 

approximately the same in the case of first order stationarity (Kelkar and Perez, 2002). If 

the mean varies significantly from a subregion to another subregion, then there is a trend 

in the data. One of the most important parts of geostatistical modelling is to find the 

correct trend model if the data show a systematic trend. The trend function can be 

developed by a regression technique, inverse distance weighting and moving window 

averaging. This trend should be removed before variogram modelling and geostatistical 

simulation. 

Second order stationarity uses the variance at each location, and it assumes that the 

variance is constant across the region. Therefore, 

( ){ } ( ){ } 2Var Z Var Z σ= + =h u h ……………………………………………………(2.2) 

By using the first and second order stationarities the relationship between the covariance 

and variogram can be obtained: 

( ) ( )2 Cγ σ= −h h ………………………..……………………………………………(2.3) 

where 2σ is the variance of data, ( )γ h is the variogram and ( )C h is the covariance 

function. 
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Direction of continuity 

Variogram and geological continuity are usually anisotropic, that is, direction dependent 

(Kelkar and Perez, 2002). Directions of continuity are most often known from geological 

interpretation or preliminary contouring of the data. At first stage of geostatistical study 

creating a kriged map can show directions of continuity for the spatial data set. Although, 

producing this kriged map requires a variogram itself but, it provides some idea about the 

large scale direction of continuity (Journel and Hujibregts, 2002).  

Another common approach is to calculate and plot the variogram map. The variogram is 

calculated for a large number of directions and distances. Then the variogram values are 

posted on a map where the centre of the map is the lag distance of zero. But before 

plotting the variogram map we need to find the maximum lag distance and lag increment 

to calculate the variogram. The sampling pattern may suggest reasonable distance 

parameters (Deutsch, 2002).  

The apparent anisotropy in the variogram can be checked further by calculating the lag 

distance at which the estimated variogram in each direction reaches the sill. 

 

Robust estimation of variogram 

In geostatistics, the variogram is the most commonly used statistical measure to describe 

spatial relationship. Variogram defines the connectivity of two points; it does not allow 

simultaneous definition of connectivity of multiple points, which may be important in 

certain conditions.  

The definition of the variogram is based on the difference in a variable measured at two 

points located a certain distance apart. This traditional variance based definition is 

convenient because it allows us to define the uncertainty with respect to estimation at 

unsampled location. If we quantify the uncertainty using some other method, we may not 

need to use a variance based spatial relationship, such as the variogram. Once the 

restriction of a variance based spatial relationship is removed, the traditional 

semivariogram equation can be modified as (Kelkar and Perez, 2002): 
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( ) ( ) ( ){ }1 where      0 2
2

w
E Z Z wγ = − + < ≤h h u h ……………………………..(2.4) 

If we choose w=2, the above formula becomes the traditional variogram. If w=1, it is 

called the madogram, which is a measure of the absolute deviation between the two 

values. If w=0.5, it is called a rodogram, which is the square root of absolute deviation. 

The smaller the value of w, the more resistant the spatial relationship is to outlier data. 

Outlier data are data points that fall outside the norm. For a normal distribution, a data 

point falling outside the mean plus or minus three times of standard deviation can be 

considered as outlier.  

 

Modified variograms in the case of biased sampling 

We can modify the traditional variogram in order to remove the impact of biased 

sampling on the estimation of variogram. For example in reservoir characterization, we 

may deal with biased data because our first few wells may be drilled based on limited 

information. As information is gathered from these wells, next wells are drilled on the 

basis of the additional information. It is obvious that we drill the wells in areas where the 

potential of oil recovery is maximum. In the case of biased sampling, in order to capture 

the direction of continuity and anisotropy better we can use modified variograms. They 

are general relative variogram, pairwise relative variogram, and non-ergodic variogram, 

covariance and correlogram. 

The definitions for these modified variograms are written below: 

• General relative variogram 

The general relative variogram is defined as  

( ) ( )
2

2
⎟
⎠
⎞

⎜
⎝
⎛ +

=
+− hh

hh
mm

GR
γγ ……………………………………………….………(2.5) 

Where ( )hγ  is the traditional variogram and h−m is the local mean at tail value 

and h+m is the local mean at head value. Normalizing the variogram with a local 
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mean eliminates the influence of the variations in lag mean (Kelkar and Perez, 

2002). 

• Pairwise relative variogram 

The pairwise relative variogram is defined as 

( ) ( )
( ) ( )
( ) ( )

( ) 2

1

2 N
i i

PR
i i i

z z
N z z

γ
=

⎡ ⎤− +
= ⎢ ⎥+ +⎣ ⎦

∑
h u u h

h
h u u h

………...……………………………(2.6) 

The pairwise relative variogram normalizes the traditional variogram the same as 

general relative variogram. The only difference between these two method of 

normalization is that, in the pairwise relative variogram, each pair difference 

squared is normalized with respect to the square of the pair mean but in general 

relative variogram each pair difference squared is normalized with respect to the 

square of the lag mean (Kelkar and Perez, 2002). 

• Non-ergodic variogram, covariance and correlogram 

A random function is called ergodic if its mean or covariance or variogram 

coincide with the corresponding spatial averages calculated over the single 

available realization which is the sample value at each location. If we have non-

ergodic behaviour in our data we should modify the definition for variogram 

(Deutsch, 2002). 

 Non-ergodic covariance: 

( ) ( ) ( ) ( )
( )

hh

h

huu
h

h +−
=

−+= ∑ mmzz
N

C
N

i
iiNE

1

1 …...……………………(2.7) 

 Non-ergodic variogram:  

( ) ( ) ( )γ = −NE NEC Ch 0 h …...………………..…………………(2.8) 

 Non-ergodic correlogram:  

( ) ( )
hh

h
h

+−

=
σσ

ρ NE
NE

C
…...………………………………………..……(2.9) 
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Modified Variograms in the case of Outlier Data 

Outlier data can significantly affect variogram estimation. Use of an extreme value in 

variogram estimation can amplify the effect because the squared difference between a 

data pair is used. If the difference between a given pair is several orders of magnitude, the 

squared difference is large enough to influence the estimated variogram at a particular lag 

distance. This may create instability in the variogram estimation and also may prevent us 

from clearly identifying the spatial structure. 

We have two options for dealing with the outlier data. The first option is to remove the 

outlier data point from the estimation process. While this is the simplest option, it is 

reasonable only if we have a physical reason for its omission. The second option is to use 

some type of nonlinear transformation to minimize the variation. These include the log, 

power, rank, indicator and normal score transforms (Kelkar and Perez, 2002). 

• Log transform 

The most commonly used transform is to use the natural logarithm of the sample 

value. Log transform is simple to use but may create difficulties in estimating 

value at unsampled locations. Our semivariogram formula then becomes: 

( ) ( ) ( ) ( )
( ) 2

1

1 log log
2

N

L i i
i

z z
N

γ
=

⎡ ⎤= − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∑
h

h u u h
h

……………...……..…..(2.10) 

• Power transform  

In this transformation the original value, ( )iz u , is replaced by ( )( ) p
iz u . 

Therefore the corresponding variogram is: 

( ) ( ) ( )( ) ( )( )
( ) 2

1

1
2

N
p p

PT i i
i

z z
N

γ
=

⎡ ⎤= − +⎣ ⎦∑
h

h u u h
h

…...………………………. (2.11) 

where p is a positive number and less than 1. The smaller the power we use, the 

smaller the variation of the data values. The most commonly used value of p is 

0.5, which represents the square root of the sample data value. 
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• Rank transform  

To calculate the ranking of a given sample value, all the sample data are arranged 

in an ascending order. The rank of the ith value in the sequence is calculated by 

1+
=

n
iRi …...…………………………..……………………………………(2.12) 

Where n is the total number of sample points and iR  is the rank of the ith value in 

sequence. Using the rank transform ensures that no significance difference exists 

between sample values because all the sample values fall between zero and one. 

• Indicator transform  

The indicator transform allows transformation of a continuous variable into a 

discrete variable. Indicator transformation is defined as below: 

( ) ( )
( )⎩

⎨
⎧

>
≤

=
k

k
k zZif

zZif
zi

u
u

u
0
1

, …...…………………………..…………...……(2.13) 

By specifying multiple threshold values, we can define multiple indicator values 

at each threshold. Defining each sample point in terms of either zero or one 

eliminates the effect of outlier data. One disadvantage of defining the indicator 

values is that the exact differences between the data values in a particular class are 

lost. Defining additional thresholds can approximately remove this disadvantage. 

In addition to removing the outlier data, indicator transformation has two more 

advantages. First, by appropriately defining the thresholds values and estimating 

the indicator variogram at each threshold, we can examine how the sample values 

are connected at different thresholds. For example, we may observe that the low 

values exhibit better continuity than high values. Another advantage for indicator 

transform is that we can transform our qualitative data (rock type) to quantitative 

data (0 and 1). 
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• Normal score transform  

The normal score transform allows transformation of sample data into equivalent 

data that follow a normal distribution with a mean of zero and the variance of 1. 

The normal score transformation is: 

( )( )1−=NSx G F x …...………………….…………………………….....……(2.15) 

Where ( )1− iG  is the inverse of the standard Gaussian cumulative distribution 

function and ( )F x is the global cumulative distribution function of the sample 

data. 

After this transformation the normal score values can be used, NSx , instead of the 

original values to calculate the semivariogram. With this type of transformation 

we can remove the outlier effect in our data. Another advantage for normal score 

transformation is that the certain estimation techniques work better with normal 

score transformed data. After obtaining the estimation with the transformed data, 

we can back-transform the data to original variable values. 

 

2.2 Calculating and fitting the experimental variogram  

After getting an idea about the direction of continuity in our data set, the experimental 

variograms in two main directions of continuity are calculated. This calculation needs 

reasonable tolerance parameters. These tolerances are defined in this section. They can be 

obtained by some logical decisions, but in the next chapters a methodology will be 

presented to optimize these tolerance parameters.  

In order to use variograms for estimation and simulation, we need a model which 

represents the spatial variability. Common practice consists of fitting experimental 

variograms with a nested combination of proven models such as the spherical, 

exponential, and Gaussian models. Both hand fitting and semi-automatic fitting (by using 

varfit; Neufeld and Deutsch, 2004) can be used to model the variogram. 
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Variogram tolerance parameters 

Choosing the tolerance parameters in the case of irregularly gridded data is complicated. 

As mentioned before, the goal of this study is to find a smart way to optimize these 

tolerance parameters in the case of irregularly spaced data. The tolerance parameters 

should be chosen in such a way that there is enough number of pairs for a reliable 

variogram value. Usually in real cases there are more data in vertical direction than 

horizontal direction; therefore it is better to separate these directions. The tolerance 

parameters are different in these two cases.  

Tolerances in vertical directions 

There are four tolerance parameters in this case; they are (Deutsch, 2002): 

• Unit lag separation distance, h (h is a scalar quantity); it is equal to data spacing in 

the case of regularly spaced data. In petroleum applications, the vertical data are 

regularly spaced, therefore choosing the unit lag separation distance is not a 

problem. 

• The distance tolerance, htol (similar to h, htol is a scalar quantity); in real case this 

parameter usually takes the values of 0.25h , 0.5h and 0.75h . The value of 0.5h  is 

used in almost all of the cases. The value of 0.25h is used when there are many 

data on a nearly regular grid and in the case of small number of pairs for each lag, 

it is recommended to use 0.75h . In next chapter this parameter will be optimized 

to have a value between 0 and h. 

• The angle tolerance, atol; this parameter is used when there is some deviation from 

vertical direction.  

• A bandwidth parameter, b; this parameter is defined to limit the region for finding 

data pairs for variogram calculation in vertical direction. After a certain lag 

distances bandwidth parameter is applied to limit the tolerance region. 
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Tolerances in horizontal directions 

There are six tolerance parameters in this case; they are (Deutsch, 2002): 

• Unit lag separation distance, h; the properties of this parameter are the same as 

vertical case. 

• The distance tolerance, htol; the properties of this parameter are the same as 

vertical case. 

• The horizontal angle tolerance, ah
tol; this parameter can be applied to limit the 

direction which we are interested to calculate the associated variogram. In the 

case of omnidirectionality, it can be set to 90 degree or a greater angle to have all 

of the points in horizontal plane. The omnidirectional experimental variogram 

averages the variability over all directions. 

• The horizontal bandwidth, bhor; similar to the vertical bandwidth, it is used to 

define a limited tolerance region in horizontal plane. In the case of 

omnidirectionality, the horizontal bandwidth should be set to a large number to 

have all of the points in all directions to calculate the omnidirectional variogram 

value. 

• The vertical angle tolerance, av
tol, used to define an angle tolerance about the 

horizontal plane. It should be set to a small value because of the large variability 

in vertical direction which can affect the true variogram calculation for a specific 

stratigraphic layer.  

• The vertical bandwidth, bver; this bandwidth relates to the vertical angle tolerance 

and is defined to limit the stratigraphic layer. It should be set to a small value to 

have a good approximation of the variogram.  

For both vertical and horizontal lag distances, the number of distance lags should be 

chosen in such a way that the total distance used for variogram calculation is about one 

half of the field size. 
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Remarks 

The choice of variogram model has a major affect on kriging and kriging-based 

simulation. All the methods for modelling the spatial variability have some advantages 

and may screen artifacts from sparse data, non-stationarity, outliers, etc. 
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Chapter 3 

Improving Variogram Calculations 

 
3.1 Methodology and principles 

The GSLIB (Deutsch and Journel, 1998) program, gamv, can be used to calculate the 

experimental variogram points for a given irregular data set. The user should define some 

tolerance parameters (see section 2.2) based on the data locations to calculate the 

experimental points. The parameter file for gamv is written below: 

 
                   Parameters for GAMV 

                   ******************* 

 

START OF PARAMETERS: 

data.dat                            -file with data 

1   2   0                           -   columns for X, Y, Z coordinates 

1   3                               -   number of variables,col numbers 

-1.0e21     1.0e21                  -   trimming limits 

gamv.out                            -file for variogram output 

10                                  -number of lags 

10                                  -lag separation distance 

5                                   -lag tolerance 

1                                   -number of directions 

0.0  90.0 400.0   0.0  90.0  400.0  -azm,atol,bandh,dip,dtol,bandv 

0                                   -standardize sills? (0=no, 1=yes) 

1                                   -number of variograms 

1   1   1                           -tail var., head var.,variogram type 

 

The bolded texts are the parameters which are used to define the tolerance parameters. 

They should be changed properly in the case of 2D or 3D data set to get a reasonable and 
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meaningful variogram. By changing each of these parameters the result would be 

different. There should exist a set of tolerance parameters that can give a reasonable 

result close to the true variogram. It means that after fitting the experimental points the 

variogram model should have minimum error when comparing to the true variogram. 

This minimization should be carried out for different sets of tolerance parameters.  

As was explained in Chapter 1 the goal in this study is to introduce a methodology to 

improve variogram calculation and fitting. By improving we mean that the final fitted 

variogram has less error for the optimized tolerance parameters compared to the true 

variogram which is almost always unknown. The main algorithm for this improvement is 

illustrated below; the algorithm has 6 steps to update the experimental variogram points. 

Optimizing the tolerance parameters

Calculating experimental variogram
by using the optimized tolerance parameters

Fitting experimental variogram

Calculating the tolerance correction factor

Rescaling t

↓

↓

↓

↓

he experimental variogram points

Refitting the rescaled experimental variogram

↓

 

Each step is discussed briefly in next section.  
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3.2 Implementation aspects 

3.2.1 Optimizing tolerance parameters 

To optimize the tolerance parameters a penalty function is defined and the optimal 

tolerance parameters are obtained by minimizing this penalty function. This penalty 

function gives a penalty for each set of parameters, this can be obtained by adding all of 

the errors (between the fitted variogram and the true or assumed to be true variogram) 

associated to each lag distance (and for each set of parameters). Figure 3.1 shows 

schematically the difference function between the fitted variogram and the reference 

variogram which is used in the definition of the penalty function.  

 

Figure 3.1. Fitted variogram (dotted line) versus the reference variogram (dashed line) and their 
difference (fitted minus reference; solid line) 

 

So the error can be written in integral form as below: 

( ) ( ) ( ) ( )
2

2

0

1 ;
2realz realz

a
fit ref

i ip wt d
a

θ γ θ γ⎡ ⎤= − ⋅ ⋅⎣ ⎦∫ h h h h ……………………………….…..(3.1) 

Where: 

( )
realzip θ   ; Penalty function for the realzi realization and set of tolerance parameters θ  

realzi   ; Realization number 

θ  ; A set of tolerance parameters 



 23

a  ; Reference variogram range 

( );
realz

fit
iγ θh   ; Fitted variogram of the experimental variogram points based on the    

tolerance parametersθ . 

( )refγ h   ; Reference variogram 

( )wt h   ; Inverse distance weight associated to each lag distance 

The inverse distance weighting associated to each lag is calculated from below formula: 

( )
( ) ( )

( ) ( )

1 ; ;

0.5 ; ;

γ θ γ
ε

γ θ γ
ε

⎧ >⎪⎪ += ⎨
⎪ <
⎪ +⎩

fit ref

fit ref

for such that
wt

for such that

h h h
hh

h h h
h

……………………....…..(3.2) 

The reason for inverse weighting of the difference between the true variogram and the 

reference variogram is that the small lag distances which show the short variability get 

more weight and the large lag distances get less weight. The small number,ε , is used in 

the denominator because in this case the weight at h=0 can be defined (which is a large 

number).θ  has different number of components depending on 2D or 3D cases. In 2D 

case θ  has at most 4 components: lag separation distance, h, lag tolerance, htol, angle 

tolerance, atol, and the bandwidth, b. In the case of omnidirectionality where the angle 

tolerance is 90 degrees and the bandwidth is a large value, θ  has 2 components of lag 

separation distance and the lag tolerance only. These four parameters are shown in Figure 

3.2. 

In 3D case since we are dealing with vertical and horizontal (minor and major) directions, 

therefore two different sets of parameters can be defined. For the vertical lag distance 

(Figure 3.3.) θ  has at most 4 components these are the unit lag separation distance, h, lag 

tolerance, htol, angle tolerance, atol, and the bandwidth, b.  
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Figure 3.2. Lag separation distance, h, lag tolerance, htol, azimuth tolerance, atol and bandwidth, b 

 

 

Figure 3.3. Lag separation distance, h, lag tolerance, htol, angle tolerance, atol and bandwidth, b in 
three dimensional case-vertical lag distance 
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For the horizontal lag distance (Figure 3.4) θ  has at most 6 components: unit lag 

separation lag distance, h, the lag tolerance, htol, the vertical angle tolerance, av
tol, the 

horizontal angle tolerance, ah
tol, the vertical bandwidth, bver and the horizontal bandwidth, 

bhor. The number of components can be decreased in case of omnidirectionality or in the 

case with no bandwidth. 

 

Figure 3.4. Lag separation distance, h; lag tolerance, htol; vertical angle tolerance, av
tol; horizontal 

angle tolerance, ah
tol; vertical bandwidth, bver and horizontal bandwidth, bhor in three dimensional 

case-horizontal lag distance 

 

Besides the tolerance parameters another parameter can be defined in order to capture the 

relationship between the tolerance parameters and the penalty function. This parameter 

which is named tolerance ratio is a function of all of the tolerance parameters which are 

used to calculate the experimental variogram. A tolerance ratio is equal to the tolerance 

area (in 2D case) or volume (in 3D case) divided by the area or the volume of the semi-

circle or hemi-sphere with a radius of 2h (h is the unit lag distance). For example this 

tolerance ratio is 100 % in the case of the calculation of the omnidirectional variogram 

(the only tolerance parameters are unit lag distance and the lag tolerance) with the lag 

tolerance, htol, which is equal to unit separation lag distance; h. Figure 3.5 schematically 

explains the tolerance ratio in 2D case. The tolerance ratio will be used as one of the 

parameters for optimizing the tolerance parameters. In general there are two different 

cases for calculating the tolerance ratio; 2D (omnidirectional and general case) and 3D 

(omnidirectional, horizontal and vertical lag distances). These cases are shown in Figures 

3.2, 3.3 and 3.4.  
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In next sections the formulas for tolerance ratio are given for different cases. The proofs 

for 3D are presented in Appendix A. 

 

3.2.1.1 Tolerance ratio in 2D 

Omnidirectional case 

In this case tolerance ratio depends only on unit lag distance, h and the lag 

tolerance, htol. The bandwidth and the angle tolerance should be set to a large 

number and 90 degree in order to calculate the omnidirectional experimental 

variogram by using gamv program in GSLIB. The area function ( )A r is the area of 

the semi-circle with the radius of r. (see Figure 3.5) 

( ) 2

2
A r rπ

= ………………………………………………………………….…..(3.3) 

Therefore the tolerance ratio is: 

( ) ( )
( )2

+ − −
= =tol tol tolA h h A h h hTol

A h h
………………….………………………….(3.4) 

 

Figure 3.5. Tolerance ratio for two dimensional case 
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General case 

In this case the tolerance area is function of unit lag distance, h, the lag tolerance, 

htol, angle tolerance, atol and the bandwidth, b. Depending on the magnitude of the 

unit lag distance, h, three cases would be happen. To specify these three cases 

another parameter, h*, can be defined which is function of the angle tolerance, atol 

and the bandwidth, b. h* can be calculated by using below formula (see Figure 3.2): 

*

sin tol

bh
a

= ………………………………………………………………….…..(3.5) 

It can be seen from Figure 3.2 that when ( )*≤ − tolh h h , the tolerance area is made 

by using the unit lag distance, lag tolerance and angle tolerance (note that the 

tolerance area in this case is independent of the magnitude of bandwidth). If 

( )*> + tolh h h  the tolerance area is function of unit lag distance, lag tolerance and 

bandwidth (in this case the tolerance are is independent of the magnitude of angle 

tolerance) and if ( ) ( )* *− < ≤ +tol tolh h h h h then the tolerance area is function of all 

four tolerance parameters. 

The three cases for different lag distances can be defined as: 

1. ( )*≤ − tolh h h ; 

( ) 2
1 ,α α= ⋅A r r …………………..……………………………………………...(3.6) 

( ) ( )
( )

1 1, , 2
2 π

+ − − ⎛ ⎞ ⎛ ⎞= = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

tol tol tol tol tol tolA h h a A h h a a hTol
A h h

……………...…….…..(3.7) 

atol is in radians. 

2. ( )*> + tolh h h ; 

( )
2

2
2 , 1 arcsin

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= ⋅ − + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

b b bA r b r
r r r

………………………….…….…..(3.8) 
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( ) ( )
( )

2 2, ,
2

+ − −
= tol tolA h h b A h h b

Tol
A h

………………….……………………….....(3.9) 

3. ( ) ( )* *− < ≤ +tol tolh h h h h ; 

( ) ( ) ( ) ( )
( )

* *
1 1 2 2, , , ,

2
− − + + −

= tol tol tol tolA h a A h h a A h h b A h b
Tol

A h
………….…….(3.10) 

3.2.1.2 Tolerance ratio in 3D 

Omnidirectional case 

Similar to the 2D case, the tolerance ratio only depends on the unit lag distance, h, 

and the lag tolerance, htol, in this case instead of area function; the volume function 

should be defined which is equal to the volume of the hemisphere with a radius of r. 

( ) 32
3
π

= ⋅V r r ………………….……………………………………………….(3.11) 

Therefore from equation 3.11, we will have: 

( ) ( )
( )

21 3
2 4

⎡ ⎤+ − − ⎛ ⎞ ⎛ ⎞= = ⋅ ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

tol tol tol tolV h h V h h h hTol
V h h h

………………….……(3.12) 

General case 

For the general 3D case, two scenarios can be considered; the first one is for the 

vertical lag distance (Figure 3.3) and the second one is for horizontal lag distance 

(Figure 3.4). 

a) Vertical lag distance 

In this case the tolerance volume is a function of unit lag distance, h, the lag 

tolerance, htol, angle tolerance, atol and the bandwidth, b (see Figure 3.3). Based 

on the magnitude of the unit lag distance three different cases exist. 

1. ( )*≤ − tolh h h ; 

( ) ( ) 3
1

2, 1 cos
3
πα α= ⋅ − ⋅V r r ………………….……………………………(3.13) 
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( ) ( )
( )

1 1, ,
2

tol tol tol tolV h h a V h h a
Tol

V h
+ − −

= …………………,…………………(3.14) 

Therefore from equations 3.11, 3.13 and 3.14, we will have: 

( )
21 1 cos 3

4
tol tol

tol
h hTol a
h h

⎡ ⎤⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

…………………………………(3.15) 

2. ( )*> + tolh h h ; 

( )
3

2 2
3

2
2, 1 1
3
π

⎡ ⎤
⎛ ⎞⎛ ⎞⎢ ⎥= ⋅ − − ⋅⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

bV r b r
r

…………………..……………………(3.16) 

( ) ( )
( )

2 2, ,
2

+ − −
= tol tolV h h b V h h b

Tol
V h

………………………...………………(3.17) 

3. ( ) ( )* *− < ≤ +tol tolh h h h h ; 

( ) ( ) ( ) ( )
( )

* *
1 1 2 2, , , ,

2
− − + + −

= tol tol tol tolV h a V h h a V h h b V h b
Tol

V h
…..…………(3.18) 

 

b) Horizontal lag distance 

In this case the tolerance volume is a function of the unit lag distance, h, the 

lag tolerance, htol, the vertical angle tolerance, av
tol, the horizontal angle 

tolerance, ah
tol, the vertical bandwidth, bver and the horizontal bandwidth, bhor 

(see Figure 3.4): 

( ), , , , ,= v h
tol tol tol ver horTol f h h a a b b …………………………………………(3.19) 

As before the magnitude of the unit lag distance results in different scenarios: 

1. ( )*≤ −ver tolh h h ;  ( *

sin
ver

ver v
tol

bh
a

= ) 
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( ) ( ) 3
3 1

2, , 1 ,
3
πα β α β⎡ ⎤= ⋅ − ⋅⎣ ⎦V r I r ………………………………………(3.20) 

Where  

( )
1

2 2 2 2 22

1 2 2 2 20

1 cot cos cot sin,
2 1 cot cos cot sin

π α θ β θα β θ
π α θ β θ

⎛ ⎞⋅ + ⋅
= ⋅ ⋅⎜ ⎟+ ⋅ + ⋅⎝ ⎠

∫I d ……………(3.21) 

( ) ( )
( )

3 3, , , ,
2

h v h v
tol tol tol tol tol tolV h h a a V h h a a

Tol
V h

+ − −
= ……………….…………(3.22) 

Therefore from equations 3.20, 3.21 and 3.22, we will have: 

( )
2

1
1 1 , 3
4

h v tol tol
tol tol

h hTol I a a
h h

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= ⋅ − ⋅ ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
………………………..…(3.23) 

2. ( ) ( )* *+ < ≤ −ver tol hor tolh h h h h ; 

( ) ( ) ( ) 3
4 2

3sin 22, , 1 , ,
3 8

απα α
⎡ ⎤⎛ ⎞= ⋅ − − ⋅⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

bV r b I r b r
r

………………...…(3.24) 

Where 
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2 2

2 2 2
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2 2 2
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α θ
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α θ θ
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⎢ ⎥⎛ ⎞⋅ + ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

r
bI r b d

r
b

…............…(3.25) 

 

( ) ( )
( )

4 4, , , ,

2

+ − −
=

h h
tol ver tol tol ver tolV h h b a V h h b a

Tol
V h

……………………....…(3.26) 

3. ( ) ( )* *− < ≤ +ver tol ver tolh h h h h ; 

( ) ( ) ( ) ( )
( )

* *
3 3 4 4, , , , , , , ,

2

− − + + −
=

h v h v h h
ver tol tol tol tol tol tol ver tol ver ver tolV h a a V h h a a V h h b a V h b a

Tol
V h

…...……………………………………………………………………….(3.27) 
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4. ( )*> +hor tolh h h ; 

( ) ( ) 3
5 3

2, , 1 , ,
3
π

⎡ ⎤= ⋅ − ⋅⎣ ⎦V r a b I r a b r …………………………………,,.…(3.28) 
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( ) ( )
( )

5 5, , , ,
2

+ − −
= tol hor ver tol hor verV h h b b V h h b b

Tol
V h

……………………...…(3.30) 

5. ( ) ( )* *− < ≤ +hor tol hor tolh h h h h ; 

( ) ( ) ( ) ( )
( )

* *
4 4 5 5, , , , , , , ,

2

− − + + −
=

h h
hor ver tol tol ver tol tol hor ver hor hor verV h b a V h h b a V h h b b V h b b

Tol
V h

…………………………..………………………………………...…...…(3.31) 

3.2.1.3 Methodology 

The whole procedure for optimizing the tolerance parameters is as below: 

1. Use spatial bootstrap (Deutsch, 2004) to obtain L values (realizations) for each of 

the data locations. 

2. Determine different reasonable sets of tolerance parameters for variogram 

calculation. 

3. For each set of tolerance parameters and each realization: 

a. Calculate the experimental variogram. 

b. Fit the experimental variogram with a variogram model, ( );
realz

fit
iγ θh , by 

using varfit program (Neufeld and Deutsch, 2004). 

c. Calculate the penalty function, ( )
realzip θ , by using equation 3.1. 
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4. For each set of tolerance parameters, calculate final penalty by averaging over 

different calculated penalty for different spatial bootstrap realizations. 

5. Map penalty function as a function of tolerance parameters. 

6. Find the optimum tolerance parameters by minimizing the penalty function. 

 

Spatial bootstrap 

Spatial bootstrap (Deutsch, 2004) is used to assess and quantify the uncertainty in the 

variogram at each lag. The spatial bootstrap procedure is as follow: 

1. Preliminary analysis: 

a. Assemble the representative distribution of the random variable Z, F(z); 

b. Define a 3-D variogram model γ(h) of the normal scores of the random 

variable Z; 

c. Decompose the n by n covariance matrix by the Cholesky decomposition 

into product of upper (U) and lower (L) triangular matrices: C = LU 

2. Generate a new set of data, z, as  

( )( )1
zz F G Lw−= …...………………………………………………………...(3.32) 

where w is a n by 1 vector of independent Gaussian values and  G(·) denotes the    

standard Gaussian cumulative distribution function. 

3. Calculate the statistic of interest from the resampled dataset. 

4. Repeat Steps 2 and 3 many times, say, L=100. 

5. Establish the distribution of uncertainty in the calculated statistic. 

This uncertainty has effect on the selection of the optimal tolerance parameters. The 

penalty function, ( )
realzip θ , can be calculated for different realizations which are output of 

spatial bootstrap. Spatial bootstrap needs the original data and also the reference 

variogram to create different realizations. This reference variogram is the same as 

( )refγ h which is used to calculate the penalty function, ( )
realzip θ . Basically to obtain the 
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tolerance parameters for a given data set first the spatial bootstrap is performed to get 

different realization at each data location. Two assumptions are made before performing 

spatial bootstrap; the first one is that the initial data distribution is representative of the 

entire population and the second one is that the data are spatially correlated; this spatial 

correlation is represented by the reference variogram which is unknown and also is not 

modeled at the first step of the tolerance parameters calculations. In chapter 4, a 

sensitivity analysis will be shown for a real data set on how to choose reasonable 

variogram range and nugget effect for a single spherical structure for the reference 

variogram model. The reasonable assumptions for the variogram model could be single 

spherical structure with range of one-third of the variogram range. Declustering 

techniques might be performed to get the weights for the data points. Spatial bootstrap 

needs the distribution of the original data. The cumulative distribution function of the 

data is required for randomly drawing the data values for the bootstrap. After determining 

the reference distribution and variogram the spatial bootstrap can be applied to get L 

realizations for each of the data locations. 

 

Experimental variogram calculations for different tolerance parameters 

The GSLIB program, gamv, can be used to calculate the experimental variogram for 

different tolerance parameters. Reasonable range for tolerance parameters should be 

defined for calculations. This range should contain the optimal tolerance parameters. The 

range for unit lag distance or lag separation distance can be obtained by building the 

cumulative distribution function of the minimum distance between the data locations. 

There is just one value for the minimum distance which corresponds to a data location. 

The minimum distance between the data points is calculated as: 

{ }min ; and , 1, 2,3, ,
data data datai i j data data data data datad i j i j n= − ≠ =u u … …...………..(3.33) 

where 
dataid is the minimum distance between the data points which corresponds to each 

data location, −
data datai ju u is the norm of the separation vector between data locations idata 

and jdata. The cumulative distribution function for 
dataid can be built and the reasonable 
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range of values for unit lag separation distance can be obtained by using this distribution. 

The values between P10 and P90 of the 
dataid values are used for different lag separation 

distances. Because of the CPU cost, the number of unit lag distances for different 

variogram calculations, nh, should not be large. To cover the whole range and test 

different lag separation distance, the following relationship is considered for calculating 

the unit lag distance for different cases. 

90 10 10 ; 0,1, 2, ,
⎛ ⎞−

= ⋅ + =⎜ ⎟
⎝ ⎠

…h h h
h

P Ph i P i n
n

…...………………………………...(3.34) 

Where h is the unit lag distance, P10 and P90 are the distances calculated from 

distribution of
dataid . hn is the number of different unit lag distance used for calculating the 

optimal one and hi is the index for hn . 

For the range of the lag tolerance, the values between 0 % and 100 % of the unit lag 

distance are used. Therefore 

; 1, 2, ,tol
tol tol tol

tol

ih h i n
n

⎛ ⎞
= ⋅ =⎜ ⎟
⎝ ⎠

… …......................................................................…(3.35) 

where toln is the number of different lag tolerances used for calculating the optimal one. 

Similar to hn , toln should not be a large number for CPU efficiency. 

For azimuth tolerance and dip tolerance, we can use values between 0 and 90 degrees. 

The increments can be defined to calculate different angle tolerances. Again the number 

of increments has impact on CPU time. The range for horizontal and vertical bandwidth 

can be estimated by using some geological information. In the case of lack of geological 

information the minimum and maximum possible values for the bandwidths can be 

considered. The maximum possible value for horizontal bandwidth can be the maximum 

areal dimension of the field and for the vertical bandwidth it is the thickness of the 

stratigraphic layer. After obtaining reasonable ranges for the tolerance parameters, the 

experimental variogram is calculated for each set of tolerance parameters and for each 

realization obtained from spatial bootstrap. 
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Fitting the experimental variogram for each realization 

In this step the compatible GSLIB program, varfit (Neufeld and Deutsch, 2004), is 

used to fit the experimental variogram points with an optimized variogram model, the 

experimental points are different for different tolerance parameters and different 

realizations. The fitted model, ( );
realz

fit
iγ θh , is used to calculate the penalty function. 

 

Calculating and minimizing the final penalty function 

First the penalty function (see equation 3.1) is calculated for each realization and each set 

of tolerance parameters. After calculating these penalties the final penalty, ( )θp  which is 

function of tolerance parameters is calculated by averaging the calculated penalties over 

different realizations for the fixed tolerance parameters. Therefore 

( ) ( )
1

1θ θ
=

= ⋅ ∑
realz

realz

realz

n

i
irealz

p p
n

…...………………………………………………………(3.36) 

where realzn is the number of realizations, θ corresponds to the fixed tolerance parameters 

and ( )θ
realzip is the penalty for realization realzi and is calculated by using equation 3.1. 

After calculating the final penalty, it should be minimized to get the optimal tolerance 

parameters. The tolerance parameters have different number of components for different 

cases. For example for omnidirectional 2D and 3D data sets, there are two components 

for variogram calculation, they are unit lag distance and the lag tolerance (instead of lag 

tolerance the tolerance ratio can also be used). For other general cases the number of 

tolerance components is greater than 2.  

For minimizing the penalty function in the presence of multiple variables a sequential 

type approach could be used to obtain the optimal point which minimizes the penalty 

function. For example if there are three variables, at first step two of them should be fixed 

and the penalty should be minimized with respect the variable which is not fixed. After 

specifying this point the next variable should be optimized and the others should be fixed. 

This procedure can be applied step by step to get the final optimal point and as mentioned 
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at each step one of the variables should be optimized and the others are fixed and each of 

the variables is optimized once. 

After obtaining the optimal tolerance parameters, the experimental variogram should be 

calculated by using the optimal tolerance parameters and fitted with the varfit 

program. 

 

3.2.2 Calculating the tolerance correction factor 

Calculating the experimental variogram by using some tolerance parameters affects the 

estimated value of the maximum and minimum range of continuity (after fitting). It can 

be proved mathematically that for example in 2D case, the true maximum range of 

continuity is underestimated and the true minimum range of continuity is overestimated. 

The amount of increase/decrease refers to the tolerance correction factor. So in general 

case the calculated experimental points are artificially shifted to the left in major 

direction and to the right in minor direction. The analytical formulas for 2D and 3D cases 

are presented in this section; the proofs for the analytical relationship are given in 

Appendix A. 

 

3.2.2.1 Tolerance correction factor in 2D without bandwidth 

Assume that the ellipse in Figure 3.6 shows the anisotropy of the variable in a specific 2D 

field. The field has a maximum range of correlation of maxha −  (the maximum radius of the 

ellipse) and the minimum range of correlation of minha − . If we introduce an angle tolerance 

of tola , then the tolerance will cause an underestimation of maxha − and an overestimation 

of minha − . Therefore the anisotropy ratio will artificially decrease just because of 

introducing tolerance parameters. For example if max 4ha − =  and min 1ha − =  (the anisotropy 

ratio would be 4:1) then introducing an angle tolerance of 22.5 degree will underestimate 

maxha −  to 3.18 and overestimate minha −  to 1.02 and the apparent anisotropy ratio would be 

3.1:1. 



 37

 

Figure 3.6. True Anisotropic ellipse (solid) and the estimated anisotropic ellipse (dashed) 

in 2D case when there is no bandwidth 

 

The relationship between the true range of correlations ( minha − , maxha − ) and the estimated 

range of correlations ( *
minha − , *

maxha − ) is derived. The estimated value for the range of 

correlation is the average of the radii in the tolerance region over the tolerance region. 

Therefore the estimated values can be written as: 

 

*
max

tol

tol

tol

tol

a

a
h a

a

rd
a

d

θ

θ

−
−

−

=
∫

∫
……………………………………………………………………(3.37) 

2

* 2
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2
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tol

tol
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a
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a
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d

π

π

π

π

θ

θ

+

−

−
+

−

=

∫

∫

……………………………………………..………………………(3.38) 
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By using the equation for the ellipse in polar coordinate the integrals can be solved, 

therefore: 

*
max min max

, ,
2 2 tol

h h h
tol

F F a
a a a

a

π πω ω
− − −

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= ⋅ < ……...…..………………………(3.39) 

( )*
min min min

,tol
h h h

tol

F a
a a a

a
ω

− − −= ⋅ > ……………………………..…………………..…(3.40) 

Where ω  is the eccentricity of the ellipse and has a value between 0 and 1 and calculated 

as below: 

2
min

min max2
max

1 ; 0ω −
− −

−

= − < ≤h
h h

h

a a a
a

………………………………………………(3.41) 

And ( ),α ωF  is the incomplete Legendre elliptic integral of the 1st kind and is defined as 

below (Abramowitz and Stegun, 1965): 

( )
2 2

0

,
1 sin

α θα ω
ω θ

=
−

∫
dF ……………………………..……………………………(3.42) 

The values for the incomplete Legendre elliptic integral of the 1st kind are tabulated in 

many mathematical handbooks (e.g. Abramowitz and Stegun, 1965). This function can be 

also calculated numerically by using the code provided in Numerical Recipes in Fortran 

77 (Press et al, 1992). 

By using the obtained formulas for *
min−ha and *

max−ha , the estimated anisotropy ratio can be 

written as below: 

( )
*

max
*

min

, ,
2 2

,

π πω ω

ω
−

−

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

tol
h

h tol

F F a
a
a F a

……………………………..…………..………(3.43) 
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We know that the true anisotropy ratio is max
2

min

1
1 ω

−

−

=
−

h

h

a
a

, since min−ha  is overestimated 

and max−ha is underestimated therefore 
*

max
*

min

−

−

h

h

a
a

will be decreased, therefore: 

*
max max

*
min min

− −

− −

>h h

h h

a a
a a

……………………………..…………………………..………….…(3.44) 

It can be proved that, 
2

tan, , arctan ,
2 2 1
π πω ω ω

ω

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− − = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ −⎝ ⎠⎝ ⎠

tol
tol

aF F a F (Abramowitz 

and Stegun, 1965) therefore the equations 3.39 and 3.40 can be written as below: 

2
*

max min

tanarctan ,
1

tol

h h
tol

aF
a a

a

ω
ω

− −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= ⋅ …………..…………………..………….…(3.45) 

( )
* 2

max
*

min

tanarctan ,
1
,

tol

h

h tol

aF
a
a F a

ω
ω

ω
−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= ……..…………………..……………..……….…(3.46) 

For example if max min4, 1, 22.5
8h h tola a a π°

− −= = = =  then the eccentricity is, 15
4

ω =  and 

by using the derived formulas for the estimated  ranges of correlations, we have: 

*
max

*
min

15 3 15, ,
2 4 8 4

1 3.184601

8

15,
8 4

1 1.024952

8

h

h

F F
a

F
a

π π

π

π

π

−

−

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= × =
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠= × =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

It can be seen that *
min minh ha a− −> and *

max maxh ha a− −< therefore the anisotropy ratio is also 

decreased: 
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* *
max max max max

* *
min min min min

3.184601 3.107073 4
1.024952

h h h h

h h h h

a a a a
a a a a

− − − −

− − − −

= ≅ < = ⇒ <  

The more important problem in the case of the variogram calculations is what the true 

values for the minor and major direction of continuity are if we know the estimated 

values for them. In almost all of the cases we know the estimated values. To do that we 

should solve the derived relations for calculating the min−ha and max−ha  by knowing, 

*
min−ha , *

max−ha and tola .  

We know that: 

( )
* 2

max
*

min

tanarctan ,
1
,

tol

h

h tol

aF
a
a F a

ω
ω

ω
−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠=  

After rearranging:  

( ) ( )
*

max
* 2

min

tan, arctan , 0
1

h tol
tol

h

a af F a F
a

ω ω ω
ω

−

−

⎛ ⎞⎛ ⎞⎛ ⎞
= ⋅ − =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

…..…………………….…(3.47) 

The values for, *
min−ha , *

max−ha and tola are known therefore the above equation can be solved 

to calculate ω  which has the value between 0 and 1. Bisection method can be used for 

finding the root of ( )f ω . After finding the actual eccentricity, the true min−ha and max−ha  

can be calculated as below: 

( )
*

min
min ,

h tol
h

tol

a aa
F a ω

−
−

⋅
= .…………………………………………………………...…….…(3.48) 

min
max 21

h
h

aa
ω

−
− =

−
…………………………………………………………..……….…(3.49) 
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3.2.2.2 Tolerance correction factor in 2D with bandwidth 

In this case since a bandwidth is introduced therefore two different apparent angle 

tolerances should be used instead of the true angle tolerance in both of the minimum and 

maximum directions of continuity. These two apparent angle tolerances are calculated as 

below. The apparent angle tolerance for maximum direction, ,max
app
tola , is shown in Figure 

3.7. 

,max 2

max 2
min

arctan
1

app
tol

h
h

ba
ba

a−
−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

…………………….…………………..……….…(3.50) 

,min 2

min 2
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arctan
1
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tol

h
h

ba
ba

a−
−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

………...……………………………..……….…(3.51) 

where b is the bandwidth.  

It is obvious that b should have a maximum value, if we want to see its effect on 

variogram calculation in the presence of anisotropic ellipse. For calculating ,max
app
tola , the 

maximum value of b is equal to *
minb . *

minb  is indicated in Figure 3.7. It is function of the 

tola , minha − and maxha − . *
minb is calculated as: 

*
min 2

2 2
max min

tan
tan1
tol

tol

h h

ab
a

a a− −

=

+

…………………………………………………..……...…(3.52) 

The bandwidth, b, in this case is satisfied in below inequality: 

*
min minhb b a −≤ ≤  

And for calculating ,min
app
tola , the maximum value of b is equal to *

maxb . It is function of the 

tola , minha − and maxha − . *
maxb is calculated as: 



 42

*
min 2

2 2
max min

tan
tan 1

tol

tol

h h

ab
a

a a− −

=

+

……………..…………………………………………...…(3.53) 

The bandwidth, b, in this case is satisfied in below inequality: 

*
max maxhb b a −≤ ≤  

 

Figure 3.7. Anisotropic ellipse in 2D case with bandwidth for maximum direction of 

continuity 

The formulas for estimated range of correlation in two major directions in the case of 

bandwidth reduce to: 

,max
*

max min
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2 2
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F F a
a a

a

π πω ω
− −
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( ),min*
min min min
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tol

h h happ
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F a
a a a

a

ω
− − −= ⋅ > …………………………………………………...…(3.55) 

To obtain minha − and maxha − a system of non-linear equations should be solved. In addition 

to above two formulas for minha − and maxha − , there are three auxiliary equations for 
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calculating ,min
app
tola , ,max

app
tola and ω  which were given before. The known parameters are the 

values for the bandwidth, angle tolerance and the estimated ranges. 

 

3.2.2.3 Tolerance correction factor in 3D without bandwidth 

In 3D tolerance case in addition to obtaining the relation between the true and the 

estimated ranges in horizontal (maximum and minimum directions of continuity) 

direction, the relationship should be obtained for vertical direction as well. The idea for 

calculating the estimated ranges are the same as in 2D case but the relations are more 

complicated. The required integrals are written in spherical coordinates, therefore for 

horizontal direction we have: 
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And for vertical direction: 

2

* 0 0
2

0 0

π

π

ρ φ θ

φ θ
=
∫ ∫

∫ ∫

tol

tol

a

ver a

d d
a

d d
……………………………………………...…………………………..(3.58) 

Where ρ  is the distance from the centre of the ellipsoid to its circumference in spherical 

coordinate and ( )1φ θ and ( )2φ θ are: 
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( ) ( )( )2 2 2
1 arccot tan 1 1 cot sinv h

tol tola aφ θ θ= ⋅ − + ⋅ ………...…………………..………..(3.59) 

( ) ( )( )2 2 2
2 arccot tan 1 1 cot cosv h

tol tola aφ θ θ= ⋅ − + ⋅ ………...…………………………..(3.60) 

After integrating and applying the boundaries of the integrals for horizontal direction we 

will have: 
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And for vertical direction we have: 

( )( )
2

*
1

0

,
2

π

ω θ θ
π

= ⋅ ⋅
⋅ ∫ver

ver tol
tol

aa F a d
a

………………………………………………………(3.63) 

Where ( )1ω θ and ( )2ω θ are calculated as: 
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h h

h h h

a a a a
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ω θ θ− −
− − −

⎛ ⎞ ⎛ ⎞
= − − ⋅ − ⋅⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠

……………………….(3.65) 

In the case that the angle tolerances and the estimated values for the ranges are known 

then by solving the three non-linear equations (equations for *
min−ha , *

max−ha and *
vera ) 

simultaneously, the three unknowns( min−ha , max−ha and vera ) can be determined. 
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3.2.2.4 Tolerance correction factor in 3D with bandwidth 

In the case of bandwidth in 3D, for horizontal direction, two cases might happen:  

1. There is vertical bandwidth (bver) but no horizontal bandwidth (bhor) is applied. 

In this case the vertical bandwidth introduces two apparent angle tolerances, 
,

,min
v app
tola and ,

,max
v app
tola  instead of v

tola . These two apparent angles are different because 

of the minimum and maximum directions of continuity and calculated as: 

,
,min 2

min 2

arctan
1

v app ver
tol

ver
h

ver

ba
ba
a−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

…………………………………………………(3.66) 

,
,max 2

max 2

arctan
1

v app ver
tol

ver
h

ver

ba
ba
a−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

………………………………………………...(3.67) 

 The equations for *
min−ha and *

max−ha are 

( )
( ) ( )( ) ( ) ( )( )*

max 1 1 1 1
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∫
…
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( ) ( )( ) ( ) ( )( )*

min 2 2 2 2
0

2
0

, ,

2

h
tol

h
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a
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a d
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π φ θ θ
− ⎡ ⎤= ⋅ − − ⋅⎣ ⎦

⋅ − ⋅
∫

∫
…………………………………………………………………………………..…...(3.69) 

where ( )1φ θ and ( )2φ θ are calculated as 

( ) ( )( )2 , 2 2
1 ,maxarccot tan 1 1 cot sinv app h

tol tola aφ θ θ= ⋅ − + ⋅ …………...………..…...(3.70) 
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( ) ( )( )2 , 2 2
2 ,minarccot tan 1 1 cot cosv app h

tol tola aφ θ θ= ⋅ − + ⋅ …………...………..…...(3.71) 

 

2. Both of the horizontal and vertical bandwidths are present. 

In this case four apparent angle tolerances are introduced two in minimum 

directions,  ,
,min

v app
tola and ,

,min
h app
tola , and two in maximum directions, ,

,max
v app
tola and ,

,max
h app
tola . 

The equations for ,
,min

v app
tola and ,

,max
v app
tola are the same as before but for 

,
,min

h app
tola and ,

,max
h app
tola we have: 
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And finally the formulas for *
min−ha and *

max−ha are 
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where ( )1φ θ and ( )2φ θ are calculated as 

( ) ( )( )2 , 2 , 2
1 ,max ,maxarccot tan 1 1 cot sinv app h app

tol tola aφ θ θ= ⋅ − + ⋅ ...................................(3.76) 
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( ) ( )( )2 , 2 , 2
2 ,min ,minarccot tan 1 1 cot cosv app h app

tol tola aφ θ θ= ⋅ − + ⋅ ...................................(3.77) 

3.2.3 Rescaling the experimental variogram points 

In 2D case, the tolerance correction factor in the two minor and major directions of 

continuity can be calculated as: 

min
min *

min

h

h

af
a

−

−

= ..................................................................................................................(3.78) 

max
max *

max

h

h

af
a

−

−

= ................................................................................................................(3.79) 

These factors in minor and major directions should be applied on all of the calculated 

experimental points therefore the lag distance axis on variogram plot for major and minor 

directions should be rescaled: 

minnew f= ⋅h h ................................................................................................................(3.80) 

maxnew f= ⋅h h ................................................................................................................(3.81) 

It should be noted that the variogram values are not changed, the plot is just shifted 

horizontally to the left or to the right depending on the minor or major directions of 

continuity.  

For 3D the optimal experimental lag distances should be updated and a variogram should 

be fitted again. The new lag distance should be obtained for three different directions: 

minor, major and vertical directions. The tolerance correction factors for minor and major 

directions are the same as equations 3.78 and 3.79, respectively. For the vertical 

direction, the correction factor is: 

*
ver

ver
ver

af
a

= .....................................................................................................................(3.82) 

And the corresponding rescaled lag distance in vertical direction is: 

new verf= ⋅h h .................................................................................................................(3.83) 
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After rescaling the lag distance axis in all of three directions and updating the 

experimental points, a variogram should be fitted by using varfit. 
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Chapter 4 

Application 

 
4.1 Synthetic case 

In this synthetic example a 2D data set is considered and we are trying to find the 

optimum parameters for calculation of experimental omnidirectional variogram, the 

parameters which can be changed are the lag distance, h and lag tolerance, it should be 

noted that the angle tolerance is 90 degree and the bandwidth is set to large number to get 

the omnidirectional variogram. 

Problem Setting 

A synthetic 2D Gaussian random field (Figure 4.1) is generated via an unconditional 

simulation for a 1024 x 1024 grid with the following isotropic variogram as a reference 

variogram: 

64( ) 0.05 0.95 ( )aSphγ == +h h  

 

Figure 4.1. Map of reference model generated by sgsim 
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64 ( )aSph = h is the isotropic spherical structure with a range of 64. The mathematical 

definition of 64 ( )aSph = h is: 

3

64

1.5 0.5      , if 64
( ) 64 64

1                                          , if 64
aSph =

⎧ ⎛ ⎞ ⎛ ⎞
⎪ × − × <⎪ ⎜ ⎟ ⎜ ⎟= ⎨ ⎝ ⎠ ⎝ ⎠
⎪

≥⎪⎩

h h
h

h

h

 

h is the norm of vector h. 

To make sure that the result has a right variogram that we have used to build it, 

variogram reproduction is checked. Figure 4.2 shows the variogram reproduction.  

 

Figure 4.2. Variogram reproduction the reference model generated by sgsim 

 

Using this reference model, we can then sample randomly at n locations (n=200 for this 

example) by using the draw program (Deutsch and Journel, 1998). The locations of the 

200 picked points are shown in Figure 4.3.  
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Figure 4.3. Locations of 200 randomly picked points from reference model 

Figure 4.4 shows the reference distribution which is the Gaussian distribution and also 

the distribution of the 200 picked points.  

 

Figure 4.4. Reference Gaussian distribution (left) and the distribution of the 200 randomly                 
picked points (right), the values are in Gaussian units 

 

Now the data set is constructed, the only difference of this data set with the real data set 

is that we know the reference variogram model of the field for this case. Spatial bootstrap 

can be used to assess uncertainty associated with variogram calculation. It gives N 

realization at each location, by using N sets of data; N different experimental variograms 

can be calculated, so at each lag there are N values for variogram which can be used to 

make the variogram distribution at each lag, therefore the variogram uncertainty can be 

quantified. Figure 4.5 shows the reference variogram and also the experimental points 
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based on the 200 randomly picked points. Our goal is to quantify the uncertainty in the 

variogram at the lags that the experimental variogram is calculated. 

 

Figure 4.5. The Reference variogram (solid line) and the experimental variogram points based on 

200 picked points (bullets), the distance is in meters (m) 

 

By using spatial bootstrap method, different realizations (e.g. 100 realizations) can be 

calculated at each of the 200 data locations. For each realization (which consists of 200 

simulated values), the experimental variogram can be calculated. Therefore at each lag 

distance we have 100 values (realizations) for the variogram. Figure 4.6 shows the 

distribution of the experimental variogram at each lag distance and the distribution of the 

variogram values at h=40. The distribution of the experimental variogram values are 

plotted at each lag distance in Figure 4.7. At each lag the variance of the variogram is 

calculated and it is plotted against the lag distance h. Figure 4.8 shows the plot of the 

variance of the variogram from spatial bootstrap against lag distance. 
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Figure 4.6. Different realizations for variogram at each lag accompanying by the probability 

density function at h=40 
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Figure 4.7. Probability density function of the variogram values at each lag distances (see Figure 

4.6), for each histogram a box plot is shown, the black dot is the reference variogram value 
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Figure 4.8. Variance of the variogram versus the lag distance (m) 

 

Below procedures are performed to find the optimum parameters for calculation of 

omnidirectional variogram: 

1. Using spatial bootstrap to obtain L values (realizations) for each location; e.g. 

L=100. 

2. Calculating experimental variogram for each realization with different tolerance 

parameters (lag separation distance, tolerance ratio and the number of lags). 

2, 4,6,...,50

% 100 4,8,12,...,100

512int int
2

tol

lag

h
hTol
h
A

n
h h

=

= × =

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

3. For each calculated experimental variogram a variogram should be fitted by using 

varfit program. Fitting variogram will reduce the uncertainty in the variogram. 

This can be shown by using spatial bootstrap before and after variogram fitting. 

At each lag distance there are 100 realizations as a result of spatial bootstrap 

therefore there are 100 variogram fits for them. Figure 4.9 shows the variogram 

plot before and after variogram fitting, it can be seen that the range of variation 
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for the variogram values is reduced after fitting. Figure 4.10 shows the reduction 

in the variance of the variogram as a result of variogram fitting. 

 

 

Figure 4.9. Calculated experimental variogram for 100 realizations from Spatial Bootstrap at h=8 

and htol=4.48 (left) and the corresponding fitted variogram values (right) 

 

Figure 4.10. Variance of the experimental variogram (dash line) and the variance of the fitted 

variogram (solid line) versus the lag distance 

 

4. By using the fitted variogram in step 3 and the reference variogram a penalty 

function, P, can be calculated by using equation 3.1. 
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5. Plotting the final penalty versus the lag separation distance and the tolerance ratio. 

The final penalty is the average of the penalties which are calculated in previous 

step over different realizations. Figure 4.11 shows the final penalty versus the 

tolerance parameters. The conditional expectation of the final penalty is plotted in 

Figure 4.12.  

6. Trying to find the optimum lag separation distance and the lag tolerance which 

minimize the final penalty. The optimum values happen at h=18 and Tol=56 %. 

 

Figure 4.11. Final penalty as a function of both lag tolerance (m) and lag separation distance (m) 

 

Figure 4.12. Conditional expectation of the average penalty versus the unit lag distance (left) and 

the tolerance ratio (right) 
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Effect of number of randomly picked points and field size on optimal tolerance 

parameters 

The synthetic case that was presented already gives us the optimal tolerance parameters 

for a certain example. But it is obvious that the optimal tolerance parameters should be 

function of the field size, number of data and the reference variogram parameters (nugget 

effect, range and the type of variogram model, i.e. spherical). To see the effect of number 

of data and field size on optimal tolerance parameters, different cases were run with field 

size of (512x512 and 1024x1024) and reference variogram parameters (isotropic 2D 

spherical variogram with the nugget effect of 0.05 and the range of 64) but with different 

number of randomly picked data points (n=128, 256, 512 and 1024). The reference 2D 

map for 1024x1024 is the same as Figure 4.2 but for 512x512 another 2D Gaussian field 

is generated by using sgsim. The reference map for this case is shown in Figure 4.13. 

The variogram reproduction is checked for this case and is plotted in Figure 4.14. The 

locations of the different randomly picked points are shown in Figure 4.15. To see better 

the effect of number of data, for each specific number of randomly picked data points and 

field size different realizations are considered. The realizations are considered by 

changing the random seed number in draw program. Figure 4.16 shows four different 

realizations for 256 randomly picked data points for a fixed field size of 1024. 

 

Figure 4.13. Map of reference model generated by sgsim for field size of 512 
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Figure 4.14. Variogram reproduction check for the reference model with field size of 512, 

distance is in meters (m) 

 

 

Figure 4.15. Locations of different number of randomly picked points                                      

from reference model with field size of 512 
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Figure 4.16. Locations of 256 of randomly picked points for different realizations (256 

data locations are different) from the same reference model with field size of 1024 

 

By using the same procedure the penalty function is calculated for various tolerance 

parameters. The plots of penalty function versus the lag separation distance and the 

tolerance ratio are shown in Figure 4.17, these plots are for just one realization of the data 

locations (one realization means that a fixed value for random seed number is used in 

drawing the data points from reference model). The conditional expectation plots for the 

penalty function for different number of data points and fixed field size of 1024 for 

different realizations (random seed numbers) are shown in Figure 4.18. The solid line 

shows the average over different realizations. The optimum tolerance parameters which 

minimize the penalty function are calculated and the associated experimental variogram 

and fitted variogram along with the reference variogram are plotted in Figure 4.19 for 

different cases of number of randomly picked data points with a fixed field size. From 

these plot it can be concluded that as number of data increases (with fixed field size) the 

number of data per unit area (or volume) will increase, therefore the optimal tolerance 

ratio should be decreased (Figure 4.20). 
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Figure 4.17. Penalty function in the case of different number of data and a fixed field size 
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Figure 4.18. Conditional expectation of the average penalty versus the unit lag distance (left) and 

the tolerance ratio (right) for different number of picked points and a fixed field size of 1024, the 

solid line is the average over different realizations (the dashed lines) 
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Figure 4.19. Fitted variogram (dashed line) versus the reference variogram (solid line) in the case 

of different number of data (n=128, 256, 512 and 1024) and a fixed field size ( 512A = ) using 

optimal tolerance parameters. Dots are the experimental variogram points. 

 

Figure 4.20. Optimal tolerance ratio versus the number of data 
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4.2 Real example 

The methodology for improving variogram calculation will be applied for Amoco data. 

Amoco 2D and 3D data set are considered for implementing the methodology. The 

spatial variable is the porosity of the reservoir. The 2D map of the well locations along 

with the data values for porosity is shown in Figure 4.21. There are 62 wells in the 

reservoir. The 2D field size of the reservoir is 10400x10400. The histogram and 

cumulative distribution function of the porosity data are shown in Figure 4.22. 

 

 Figure 4.21. Location map of the 2D porosity data 

 

 

Figure 4.22. Location map of the 2D porosity data 
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The nominal spacing between data is 1320.80: 

10400 10400nominal spacing 1320.80
62

A
n

×
= = =  

The histogram and the cumulative distribution function of the minimum distance between 

wells are shown in Figure 4.23. 

 

Figure 4.23. Distribution of the minimum distance between wells 

 

The procedure that is considered to optimize the variogram tolerance parameters is as 

below: 

1. Transforming data to normal score 

2. Spatial Bootstrap; L=100, there are 100 values at each well (62 wells) 

3. Calculating experimental variogram for each realization for different tolerance 

parameters: 

80 ; 1, 2,3, , 25

% 100 10 ; 1, 2,3, ,10

10400 65int int int ; 1, 2,3, , 25
2 2 80

tol

lag

h ilag ilag
hTol itol itol
h
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n ilag
h ilag ilag

= × =

= × = × =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟× ×⎝ ⎠ ⎝ ⎠⎝ ⎠

…

…

…

 

25 10 100 25,000× × = total variograms should be calculated for different tolerance 

parameters. 
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4. Fitting variogram by using varfit program for each calculated experimental 

variogram (25,000 variograms). 

5. Defining an assumed to be true variogram with spherical structure and nugget 

effect of 20 % and the range of one third of the field size as a reference variogram 

for calculation of the penalty function: 

1 3500
3

a A a≈ ⇒ ≈  

( ) ( )35000.2 0.8 aSphγ == + ×h h  

6. Calculating penalty function for each realization and each set of tolerance 

parameters. At last the penalty function should be averaged over 100 realizations. 

There are total 250 points (250 different set of parameters); the plot is smoothed 

by using inverse distance averaging method and shown in Figure 4.24. The 

minimum of the penalty function happens at h=1098 and Tol=10 %.  

The angle tolerance is also optimized. For optimization of angle tolerance, the 

optimized unit lag separation distance and the lag tolerance (h=1098, htol=109.8) 

are used. In this case the average penalty function is calculated for different angle 

tolerance (5, 10,… ,90 degrees). The minimum of the penalty function happens at 

atol=40 degrees. Figure 4.25 shows the plot of penalty function versus the angle 

tolerance. 

 

Figure 4.24. Plot of penalty function as a function of unit lag distance and the tolerance ratio 
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For choosing the variogram model of ( ) ( )35000.2 0.8 aSphγ == + ×h h , a sensitivity 

analysis is performed on the selection of the nugget effect and the variogram range by 

using the Amoco 2D data. First the range of correlation of the assumed to be the 

reference variogram is fixed to the 30 percent of the field size and then the nugget effect 

is changed from 0 percent to 100 percent. The plots of the penalty function for this case is 

shown in Figure 4.26. In second case the nugget effect is fixed to 0 percent and now the 

range of correlation of the variogram is changed from 10 percent to 100 percent of the 

field size. The plot of the penalty function for this case is shown in Figure 4.27. As it can 

be seen from Figure 4.26 and 4.27, the low value region for the penalty function is 

approximately unchanged when the nugget effect varies from 0 percent to 30 percent and 

the range of correlation (reference variogram range) varies between 10 percent and 100 

percent of the field size. In the case of fixed reference variogram range and the nugget 

effect between 40 percent to 100 percent, the locations of the low values are not the same 

as other plots. Therefore for reference variogram range, one-third of the field size is a 

reasonable value for reference variogram. 

The Amoco 3D data set is also considered to obtain the optimized vertical bandwidth. 

The proportional stratigraphic coordinate is used for z-direction. The stratigraphic z-

coordinate is not multiplied by the average thickness of the layer therefore it is between 0 

and 1. The optimized vertical band width should be multiplied by the average thickness 

to have the actual value. Other tolerance parameters are assumed to be constant when the 

vertical bandwidth is optimized. They are assumed to be a reasonable value. The vertical 

angle tolerance of 15 degree, the unit lag distance was considered to be the average of the 

data spacing in stratigraphic coordinate (in original coordinate, since the Amoco data is 

well log data, the vertical data spacing is constant but when the coordinate is transformed 

stratigraphically, the data spacing varies). Figure 4.28 shows the plot of the penalty 

function versus the vertical bandwidth. It can be seen from plot that the optimized 

vertical bandwidth happens at 0.002 in stratigraphic unit. 
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Figure 4.25. Plot of penalty function as a function of angle tolerance for Amoco 2D data set 
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Figure 4.26. Plot of penalty function as a function of unit lag distance and the tolerance ratio for 

different nugget effect values for reference variogram model used in penalty function calculation 

for Amoco 2D data; the reference variogram range is set to be 30 percent of the field size 
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Figure 4.27. Plot of penalty function as a function of unit lag distance and the tolerance ratio for 

different reference variogram range for variogram model used in penalty function calculation for 

Amoco 2D data; the nugget effect is set to be 0 percent 
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Figure 4.28. Plot of penalty function as a function of vertical bandwidth for Amoco 3D data set, 

the vertical bandwidth is a value between 0 and 1 because it is in proportional stratigraphic unit 

which is a fraction 
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Chapter 5 

Conclusion and Future Work 

 
5.1 Optimal tolerance parameters for variogram calculation 

A methodology for optimizing tolerance parameters for variogram calculation has been 

proposed. The methodology is straightforward and the workflow was presented. The 

optimality is defined as how close the fitted variogram to the true variogram. Basically, 

the idea is to minimize the error between the fitted variogram and an assumed to be true 

variogram. The assumed to be true variogram was considered to be one structure 

isotropic spherical variogram with no nugget effect. A simple sensitivity on this selection 

was shown. The sensitive parameters that were checked are the nugget effect (ranging 

from 0 to 100 percent while the reference variogram range is constant) and the reference 

variogram range (ranging from 10 percent to 100 percent of the field size while the 

nugget effect is fixed). This example showed that the tolerance parameters are 

approximately the same in these cases for a given data set. Based on the experimental 

variogram point a variogram can be fitted and it can be compared to the assumed to be 

true variogram and a penalty can be defined based on the difference between these two 

variogram function. To consider better the uncertainty associated to the variogram points 

a spatial bootstrap is used, then the penalty value at each set of tolerance parameters is 

the averaged of the penalty values for different realizations. Spatial bootstrap uses 

unconditional simulation and assumes all parameters are fixed.  

Fitting the experimental variogram reduces the uncertainty in the variogram at each lag 

distance. It was shown by using spatial bootstrap.  After minimizing the penalty function 

and getting the optimized tolerance parameters the experimental variogram should be 
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calculated by using these tolerance parameters. Basically introducing tolerance 

parameters in variogram calculation overestimates the range of correlation in minor 

direction and underestimates the range of correlation in major direction. This amount of 

underestimation or overestimation was determined analytically. The correction factor in 

major, minor (in both 2D and 3D data set) and vertical direction (in 3D) should be 

determined and then the lag distances should be rescaled by using these correction factors 

and then refitted.  

 

5.2 Future work 

A wide variety of optimization techniques might be used for optimizing tolerance 

parameters. Spatial bootstrap was presented to assess uncertainty in tolerance parameters 

optimization. Conditional finite domain (CFD) approach (Babak and Deutsch, 2007) can 

be used instead of spatial bootstrap to parameter the uncertainty in the statistics of interest 

(i.e. penalty function). There are some limitations in using spatial bootstrap comparing to 

CFD approach. First, it allows only the quantification of uncertainty of order one but 

CFD approach allows the quantification of uncertainty of any order. Second, it does not 

directly include the conditioning data and the size of the domain of interest into 

uncertainty assessment but CFD does and thirdly it does not account for all possible data 

in the area of interest but CFD does. 
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Appendix A 

 
In this appendix the proof for 3D tolerance ratio which was explained in chapter 3 will be 

presented. 

 

Tolerance ratio in 3D 

Case I: *
ver tolh h h≤ −    
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tol tola a . Analytically it is, 

( )
2 2 2 2

2 2 2 2 2
3: cot cot , ,

0

h v h v
tol tol tol tol

D

x y z h
D x a y a z V h a a dxdydz

z

⎧ + + ≤
⎪

+ ≤ ⇒ =⎨
⎪ ≥⎩

∫∫∫  
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To solve the above triple integral the coordinates should be changed to spherical 

coordinates, therefore: 

( ) 2
32 2 2 2 2: , , sin

cos cot sin cot cot
h v
tol tolh v

tol tol D

h
D V h a a d d d

a a
ρ

ρ φ ρ φ θ
θ θ φ

≤⎧
⇒ =⎨

+ ≤⎩
∫∫∫  

And finally the triple integral would be 

( ) ( )1
32 22

3 10 0 0 0
, , sin 1 cos

3
hh v

tol tol
hV h a a d d d d

π φ π
ρ φ ρ φ θ φ θ= = −∫ ∫ ∫ ∫  

Where 1φ should be satisfied in below equation: 

1
2 2 2 2 2

2 2 2 2 2
1 1 2 2 2 2

cos cot sin cotcot cos cot sin cot cos
1 cos cot sin cot

h v
h v tol tol
tol tol h v

tol tol

a aa a
a a

θ θφ θ θ φ
θ θ

⎛ ⎞+
= + ⇒ = ⎜ ⎟+ +⎝ ⎠

 

Therefore the formula for the volume becomes: 

( ) ( ) 3
3 1

2, , 1 ,
3

h v h v
tol tol tol tolV h a a I a a hπ ⎡ ⎤= −⎣ ⎦  

Where: 

( )
1

2 2 2 2 22 2

1 1 2 2 2 20 0

cos cot sin cot1 1, cos
2 2 1 cos cot sin cot

h v
h v tol tol
tol tol h v

tol tol

a aI a a d d
a a

π π θ θφ θ θ
π π θ θ

⎛ ⎞+
= = ⎜ ⎟+ +⎝ ⎠

∫ ∫  

The tolerance ratio is defined as the 

( ) ( )
( )

( ) ( ) ( )

( )

( )

3 3

3 3
1

3

2 2
1

, , , ,
%

2
2 1 ,
3                                2 2

3
1 , 3

                                
4

h v h v
tol tol tol tol tol tol

h v
tol tol tol tol

h v
tol tol tol tol

V h h a a V h h a a
Tol

V h

I a a h h h h

h

I a a h h h

h

π

π

+ − −
=

⎡ ⎤⎡ ⎤− + − −⎣ ⎦ ⎣ ⎦=

⎡ ⎤ ⎡ ⎤− +⎣ ⎦⎣ ⎦= ( )
2

13

1 1 , 3
4

h v tol tol
tol tol

h hI a a
h h

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= − + ⇒⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

  

Case II: * *
ver tol hor tolh h h h h+ < ≤ −  



 A-3 

( )4 , , h
ver tolV h b a  is the volume of the region within the sphere with  a radius of a h and the 

shape with  a cross section of an ellipse, one of the main axis of this ellipse has a constant 

length of verb . Analytically it is, 

( )

2 2 2 2

2 2
2 2 2

42: cot , ,

0

h h
tol ver tol

ver D

x y z h
y zD x a z V h b a dxdydz
b

z

⎧ + + ≤
⎪
⎪ + ≤ ⇒ =⎨
⎪
⎪ ≥⎩

∫∫∫  

                       

 

( )
( )

( )

* *
4 1 2

2 2cos* 2
1 0

* * * 2
2

*

, ,

sin 2costan tan
2 4

1 1, sin ,2 cos 2 sin cos
2 2

, ,
    

h
tol

h
ver tol

hhh a tolh h tol
ver tol ver tol ver

h h h h
elliptic cylinder ver tol tol ver tol tol

ver

V h b a V V

ah aV b z a dz b a b h

V V V b h a h a V b a a h

V h b

π
π π

π

= +

= = =

⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦⎣ ⎦

=

∫

( ) ( )

( ) ( ) ( )

2

*
2

4

sin 2
2 2

, , sin 2
, ,

2 4

h h
tol tol

ver

h h
ver tol tolh

ver tol ver

a a
b h

V h b a a
V h b a b h

π

π

−

⇒ = −

 

Where ( )* , , h
ver tolV h b a is the volume within the region inside both of the elliptic cylinder 

(with minor and major axis of , sin h
ver tolb h a ) and the sphere with a radius of h.  

Analytically it is: 
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( )
2 2 2 2

*2 2

2 2 2

: , ,
1

sin

h
ver tol

Dh
tol ver

x y z h
D V h b a dxdydzx y

h a b

⎧ + + ≤
⎪ ⇒ =⎨

+ ≤⎪
⎩

∫∫∫  

In cylindrical coordinates it reduces to 

( )

( ) 1 1

1

2 2 2

*2
2 2

2 2 2

2*

0 0

1: , ,
cos sin
sin

, ,

h
ver tol

D
h
tol ver

r zh
ver tol z

r z h

D V h b a rdzdrdr

h a b

V h b a rdzdrd
π

θ
θ θ

θ
−

⎧ + ≤
⎪⎪ ⇒ = ⇒≤⎨
⎪ +
⎪⎩

=

∫∫∫

∫ ∫ ∫
 

Where 2 2
1z h r= − and 

1
2 2 2

1 2 2 2

cos sin
sin h

tol ver

r
h a b

θ θ
−

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

, therefore; 

( )

( ) ( )

( ) ( )

1 1 1 1

1

1

2 2 2* 2 2
10 0 0 0 0 0

3 32 22 2 3 2 22 2
10 0

0

* 3
2

, , 2 2

1 2                      2
3 3

4, , 1 , ,
3

r z r rh
ver tol z

r

h h
ver tol ver tol

V h b a rdzdrd rz drd r h r drd

h r d h h r d

V h b a I h b a h

π π π

π π

θ θ θ

θ θ

π

−
= = = −

⎡ ⎤ ⎡ ⎤−
= − = − −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤⇒ = −⎣ ⎦

∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫  

where 

( )

3
2 2

3 2 2 2
2 222 21

2 20 0
2 2 2

2

csc cos sin 1
1 1, , 1

2 2 csc cos sin

h
tol

h ver
ver tol

h
tol

ver

ha
brI h b a d d

hh a
b

π π
θ θ

θ θ
π π θ θ

⎡ ⎤
+ −⎢ ⎥⎡ ⎤⎛ ⎞ ⎢ ⎥= − =⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦ +⎢ ⎥

⎣ ⎦

∫ ∫  

By knowing ( )* , , h
ver tolV h b a , the formula for ( )4 , , h

ver tolV h b a  reduces to 

( ) ( ) ( )

( ) ( ) ( )

*
2

4

3 2
4 2

, , sin 2
, ,

2 4
sin 22 1 , ,

3
, ,

4
h

ver

h h
ver tol tolh

ver tol ver

h
tolh

ver tolt l v ro e

V h b a a
V h b a b h

a
I hV h h hb b a ba

π

ππ

= −

⎡ ⎤= − −⎣ ⎦
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 The tolerance ratio is defined as the 

 

( ) ( )
( )

4 4, , , ,
%

2

h h
tol ver tol tol ver tolV h h b a V h h b a

Tol
V h

+ − −
=  

Case III: * *
ver tol ver tolh h h h h− < ≤ +  

( ) ( ) ( ) ( )
( )

* *
3 3 4 4, , , , , , , ,

%
2

h v h v h h
ver tol tol tol tol tol tol ver tol ver ver tolV h a a V h h a a V h h b a V h b a

Tol
V h

− − + + −
=  

Case IV: *
hor tolh h h> +  

The interested volume in this case can be derived by using the formula for ( )3 , ,hor verV h b b , 

but instead of using the cot h
tola  and cot v

tola , we can use the equivalent of them in terms of 

the bandwidth which are equal to 
hor

h
b

and 
ver

h
b

respectively. 

( ) ( ) 3
5 3

2, , 1 , ,
3hor ver hor verV h b b I h b b hπ ⎡ ⎤= −⎣ ⎦  

Where 

( )

3
2 2 2

2 2
2 22

3 2 20
2 2

2 2

cos sin 1
1, ,

2 cos sin

hor ver
hor ver

hor ver

h h
b bI h b b d

h h
b b

π
θ θ

θ
π θ θ

⎡ ⎤
+ −⎢ ⎥

⎢ ⎥=
⎢ ⎥+⎢ ⎥
⎣ ⎦

∫  

The tolerance ratio is defined as the 

( ) ( )
( )

5 5, , , ,
%

2
tol hor ver tol hor verV h h b b V h h b b

Tol
V h

+ − −
=  

Case V: * *
hor tol hor tolh h h h h− < ≤ +  

( ) ( ) ( ) ( )* *
4 4 5 5, , , , , , , ,

%
(2 )

h h
hor ver tol tol ver tol tol hor ver hor hor verV h b a V h h b a V h h b b V h b b

Tol
V h

− − + + −
=  
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