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Abstract

The variogram model used in estimation and/or simulation is unquestionably important.
Quantifying and assessing the variogram model with less uncertainty result in reasonable
models and simulations. In real case when the true variogram is not known, the only
thing that can help us to quantify the true variogram with associated uncertainty is our
data. In the case of regularly gridded data calculating experimental variogram is much
easier than the case of irregular data set; in this latter case some tolerance parameters
should be defined to have enough data pairs for calculating a reliable variogram.

These tolerance parameters can be optimized by minimizing a well defined penalty
function that accounts for the difference in the fitted variogram and the assumed to be
true variogram. This work gives a reasonable tool to assess the experimental variogram

with less uncertainty.
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Chapter 1

Introduction

One of the simple applications of geostatistics in earth sciences data is to estimate the
value of the spatial variable at unsampled location. This estimation at unsampled location
acts as the basis for other geostatistical techniques (such as uncertainty quantification and

simulation). It uses spatial correlation of the variable over the whole domain of study.

Assume that {Z (u);u € A} is a random function model (where Z(u) is a random

variable) which represents the value of the variable at all of the locations of interest, U,

within the domain A. In reality we do not know for certain{Z (u);u e A}. Our goal is to

characterize it with the associated uncertainty. What is available to us in reality is a data

set which represents the variable at selected locations in the domain.

Geostatistics helps to characterize the full model from the available data with associated
uncertainty. The variogram is a spatial correlation function that is later used to estimate
the random function at unsampled location. It gives information about how dissimilar the
value of the variable at one location is to another location separated by a lag vector h.
There always exists a true variogram but with real data, it is unknown. In real case we

have to use the data to estimate the variogram.

1.1 Background on Variogram

The variogram is a two-point statistic that spatially relates two random variables (RV),

Z(u) and Z(u+h):



2y(N)=E{[ZW) = ZU+MP} oo (1.1)

where U and h are location and lag vectors, respectively, in domain A. Matheron (1965)

first proposed a method-of-moments approach to approximate the variogram:

N (hy)

Nt Z} [Z(u) = Z(U )T e, (1.2)

27(hy) =

where N(h, ) is the number of pairs of data separated by a vector hy, K is the lag number
which is defined based on some tolerance parameters that will be explained later,
k=1,...,K lags. h, is the mean of the separation distance between the data points of the k™

lag. The experimental variogram can be calculated for all of the directions but practically

it is calculated for principal directions of continuity (major, minor and vertical).

One can relate each point on a variogram plot to an h-scatterplot, which shows all
possible pairs of data values whose locations are separated by a certain distance vector h.
Journel (1989) described the calculation of the variogram from this h-scatterplot as

calculating the moment of inertia about the 45° line (see Figure 1.1).
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Figure 1.1. Moment of inertia interpretation of the variogram based on an h-scatterplot.

(Redrawn from Goovaerts, 1997)

Based on the distribution of the cloud of points on an h-scatterplot, we can tell how
similar the data values are over a certain distance in a particular direction (as defined by
the lag vector h). If the data values at locations separated by h are similar, the pairs will

plot close to a 45" line. We naturally expect that this cloud of points will show little



dispersion at small lag distances, but as lag distance increases, this cloud of paired values
is expected to increase in dispersion. This notion of dissimilarity (or dispersion) is neatly

captured by the variogram.

The number of pairs available for computing the variogram depends on the lag distance.
For regularly spaced samples, as the lag separation gets larger there are fewer points, so
the method-of-moments approximation for the variogram is less precise at larger lag

distances. If there are n observed data, then there are n(n-1)/2 unique pairs of

observations taken over all possible lag distances. Thus, even a data set of moderate size
generates a large number of pairs. Figure 1.2 shows a few different lag distances in the
case of regular spaced data for calculating the experimental variogram. We can see that
depending on the direction, the lag spacing considered, and the size of the regular grid,

the number of pairs used for calculating the variogram can be quite different.

In practice, data are rarely exactly regularly spaced. Sampling campaigns may target
nominal drillhole/well spacing; however, certain regions of the deposit/reservoir are
inevitably more densely drilled as they provide more information about the available
resource. As such, real data are irregularly spaced and the paired information used in

calculating the experimental variogram is based on approximate lag separation distances.

Therefore in calculating the experimental variogram in the real case where the data are
not on a regular grid some tolerance parameters should be defined to have enough data

for calculating reliable variogram with more data pairs (Deutsch and Journel, 1998).

Even after the variogram is numerically calculated, we must still fit the experimental
points with a positive semi-definite variogram model. This model is then used in
subsequent estimation and/or simulation. Theoretically, we are not constrained to
consider any set of models so long as positive semi-definiteness of the resulting model is
ensured. Practically, this can be quite prohibitive given the challenges associated to
validating that this positive semi-definiteness condition is guaranteed for all directions
and all distances. As a result, there are a set of theoretically validated models that are
widely adopted including the nugget, spherical, exponential and Gaussian models. These

can be linearly combined in an infinite number of ways to fit most experimental



variograms. Gringarten and Deutsch (2001) provide an extensive discussion on

variogram interpretation and some guidelines on variogram modelling.
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Figure 1.2. Different lag distances in the case of regular spaced data: h=1 taken vertically yields
40 pairs (top left); h=1 taken horizontally results in 42 pairs (top right); h=2 in the horizontal
direction will give 36 pairs (bottom left); and h=3 in the horizontal direction results in 30 pairs

(bottom right).

Of course, the uncertainty in calculating an experimental variogram is carried forward
and somehow resolved by the user when the experimental points are fit with a variogram
model. The variogram model is required for all distance and direction vectors h. The
experimental variogram calculation gives variogram values at specific lag distances and
directions (usually along the principal directions of continuity), (Deutsch 2002). To build
the geostatistical models, we need to have a variogram function for all lag distances and
directions. There are some variogram models commonly used in practice, i.e. the nugget
effect, spherical, exponential, Gaussian, etc (Deutsch 2002). These models can be used to

fit the experimental variogram values.



Specifically there are some key components of the fit that are important (Goovaerts,

1997):

e Although the value of the variogram for h=0 is strictly zero, short scale variability
may cause sample values separated by extremely small distances (lag) to be quite
dissimilar. This results in an apparent vertical intercept on the variogram plot that

is often referred to as the nugget effect.

e For a stationary random function, the limit of dissimilarity or the variogram value
at which the variogram points appear to converge to at large lag distances is
referred to as the sill. We can also interpret the sill as the value at which paired
data are no longer correlated to each other, or C(h)=0 where C(h) is the

covariance of pairs of data separated by h. The well established relationship

between the variogram, covariance and variance, y(h)=C(0)-C(h), where

C(0) represents the variance, demonstrates that the sill of the variogram is

equivalent to the variance of the data:

e The range is the lag distance at or near which the variogram reaches the sill;

beyond that distance the corresponding correlation coefficient is zero.

It should be noted that throughout this thesis first and second order stationarity is
assumed. These two types of stationarity assumption are defined in chapter 2. There is

also a brief explanation of decision of stationarity in chapter 2.

1.2 Introductory example

In this section an introductory example will be presented to show the importance of
defining the right parameters for variogram calculation. To understand better the problem
for optimizing and defining the reasonable tolerance parameters a synthetic data set is
considered with a known variogram model. To have this synthetic data set an

unconditional sequential Gaussian simulation is performed with a known isotropic



variogram with a single spherical structure with nugget effect of 0.05 and with field size
of 1024x1024, then 128 data points are picked randomly from this simulated field. The

locations of the data points are shown in Figure 1.3.

To get a range for reasonable values for lag separation distance the distribution of the
distance to nearest sample can be considered. Figure 1.4 shows the probability density
function and cumulative distribution function of the minimum distance between data
points. It shows that between the unit lag distance of 30 and 40, more data pairs can be

found, but this tolerance parameter should be optimized.
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Figure 1.3. Locations of synthetic data set, the values are in Gaussian units

Figure 1.5 shows different experimental variogram plots for different tolerance
parameters. Each of these cases shows different variogram from a unique data set.

Choosing optimal tolerance parameters will affect on variogram modelling and choosing

a right variogram model.
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Figure 1.5. Experimental variogram points for different unit lag distances and lag tolerances, the

tolerance ratio is the ratio between the lag tolerance and the unit lag distance



1.3 Outline of the thesis

In this study a decision support system will be introduced to improve variogram
calculation and modelling. The goal is to model the experimental variogram in such a

way that it gets closer to the true variogram which is in almost all of the cases is

unknown.

In chapter 2 the theoretical issues related to the variogram calculations and fitting will be
discussed. The focus is more on defining all of the parameters that affect the calculation
of the variogram. These parameters are directions and tolerance parameters which consist
of unit lag distance, lag tolerance, angle tolerance (vertical, horizontal) and the bandwidth
(vertical, horizontal). The rest of the chapter is an introduction to variogram fitting, it is
considered in this chapter because the following chapters largely use automatic

variogram fitting.

In chapter 3 the emphasis is on defining the optimal tolerance parameters based on the
data values and their locations. The idea of optimizing the tolerance parameters will be
presented in detail, the proposed methodology is to define a penalty function which is
function of these parameters and try to find the point where the penalty is minimized with
respect to the variogram calculation parameters. The implementation aspects regarding

two and three dimensional cases will be discussed.

In chapter 4 a case study will be presented. Real 2D and 3D data sets are used to test the

optimization technique and quantify the optimal tolerance parameters.

In chapter 5, the conclusions and future work for the proposed methodology will be

discussed.



Chapter 2

Variogram Calculations

Throughout this thesis, h is the lag distance which is a vector, h is the unit lag distance
and hy is the unit lag tolerance. Both of the unit lag distance, h, and the unit lag

tolerance, hy, are scalar quantities.

2.1 Spatial relationship

Spatial relationship can be used to find out how neighboring values are related. There are
different types of spatial correlation functions which define the spatial relationship. They
are covariance, correlogram, traditional variogram, traditional cross variogram (in the
case of two or more variables), general relative variogram, pairwise relative variogram,
madogram, rodogram, and the traditional variogram for transformed variables, (e.g.
variogram of logarithms of the variable, variogram for indicator variables and variogram
for Gaussian variables). The definition for all of the spatial correlation functions will be
presented in this chapter. Some of these spatial functions are named as robust variogram
estimator (e.g. general and pairwise relative variogram). Among these spatial correlation
functions, the traditional variogram is the most commonly used spatial relationship in
geostatistics. In this study the focus is on the traditional variogram. The same
methodology which will be presented in subsequent chapters can be used for other spatial
correlation functions, but the traditional variogram function should be replaced with
appropriate spatial correlation function.

In practice, several difficulties are encountered in estimating the variogram. These

considerations are discussed below.



Decision of stationarity

The assumption of stationarity requires that the proposed geostatistical model based on
our sampled data, can adequately describe the behaviour of the population. The goal is to
infer the population based on the sample data. So, we should make an informed decision
regarding what information we can use to describe the region of interest, this is called the
decision of stationarity (Kelkar and Perez, 2002). In geostatistical study two kinds of
stationarities can be defined, they are first order and second order stationarities. The first

order stationarity is as below:

E{Z(h)}=E{Z(u+h)}=m ... (21)

It means that the expected value of a random variable at u is the same as the expected
value of a random variable h lag distance away. Therefore first order stationarity means
that the expected value across the region is the same. If we divide the region into small
subregions and calculate the mean within each subregion then the means should be
approximately the same in the case of first order stationarity (Kelkar and Perez, 2002). If
the mean varies significantly from a subregion to another subregion, then there is a trend
in the data. One of the most important parts of geostatistical modelling is to find the
correct trend model if the data show a systematic trend. The trend function can be
developed by a regression technique, inverse distance weighting and moving window
averaging. This trend should be removed before variogram modelling and geostatistical

simulation.

Second order stationarity uses the variance at each location, and it assumes that the

variance is constant across the region. Therefore,

Var{Z(h)}=Var{Z(u+h)}=c?.......cccocoiiiiii (2.2)

By using the first and second order stationarities the relationship between the covariance

and variogram can be obtained:

(M) =0 =C(h) i1 (2.3)

where ois the variance of data, ;/(h) is the variogram and C(h)is the covariance

function.
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Direction of continuity

Variogram and geological continuity are usually anisotropic, that is, direction dependent
(Kelkar and Perez, 2002). Directions of continuity are most often known from geological
interpretation or preliminary contouring of the data. At first stage of geostatistical study
creating a kriged map can show directions of continuity for the spatial data set. Although,
producing this kriged map requires a variogram itself but, it provides some idea about the

large scale direction of continuity (Journel and Hujibregts, 2002).

Another common approach is to calculate and plot the variogram map. The variogram is
calculated for a large number of directions and distances. Then the variogram values are
posted on a map where the centre of the map is the lag distance of zero. But before
plotting the variogram map we need to find the maximum lag distance and lag increment
to calculate the variogram. The sampling pattern may suggest reasonable distance

parameters (Deutsch, 2002).

The apparent anisotropy in the variogram can be checked further by calculating the lag

distance at which the estimated variogram in each direction reaches the sill.

Robust estimation of variogram

In geostatistics, the variogram is the most commonly used statistical measure to describe
spatial relationship. Variogram defines the connectivity of two points; it does not allow
simultaneous definition of connectivity of multiple points, which may be important in

certain conditions.

The definition of the variogram is based on the difference in a variable measured at two
points located a certain distance apart. This traditional variance based definition is
convenient because it allows us to define the uncertainty with respect to estimation at
unsampled location. If we quantify the uncertainty using some other method, we may not
need to use a variance based spatial relationship, such as the variogram. Once the
restriction of a variance based spatial relationship is removed, the traditional

semivariogram equation can be modified as (Kelkar and Perez, 2002):
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y(h):%E{‘Z(h)—Z(th)‘w} where  0<WS2..oooooooororrreereeeeneenenn (2.4)

If we choose w=2, the above formula becomes the traditional variogram. If w=1, it is
called the madogram, which is a measure of the absolute deviation between the two
values. If w=0.5, it is called a rodogram, which is the square root of absolute deviation.
The smaller the value of w, the more resistant the spatial relationship is to outlier data.
Outlier data are data points that fall outside the norm. For a normal distribution, a data
point falling outside the mean plus or minus three times of standard deviation can be

considered as outlier.

Modified variograms in the case of biased sampling

We can modify the traditional variogram in order to remove the impact of biased
sampling on the estimation of variogram. For example in reservoir characterization, we
may deal with biased data because our first few wells may be drilled based on limited
information. As information is gathered from these wells, next wells are drilled on the
basis of the additional information. It is obvious that we drill the wells in areas where the
potential of oil recovery is maximum. In the case of biased sampling, in order to capture
the direction of continuity and anisotropy better we can use modified variograms. They
are general relative variogram, pairwise relative variogram, and non-ergodic variogram,

covariance and correlogram.
The definitions for these modified variograms are written below:
e General relative variogram

The general relative variogram is defined as

2
m., +m,,
S

Where y(h) is the traditional variogram and m , is the local mean at tail value

VGR(h):

and m,, is the local mean at head value. Normalizing the variogram with a local
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mean eliminates the influence of the variations in lag mean (Kelkar and Perez,
2002).

Pairwise relative variogram

The pairwise relative variogram is defined as

Yon () = Nih)iﬁ){z(“f)_z(”i :h)} ............................................. 2.6)

The pairwise relative variogram normalizes the traditional variogram the same as
general relative variogram. The only difference between these two method of
normalization is that, in the pairwise relative variogram, each pair difference
squared is normalized with respect to the square of the pair mean but in general
relative variogram each pair difference squared is normalized with respect to the
square of the lag mean (Kelkar and Perez, 2002).

Non-ergodic variogram, covariance and correlogram

A random function is called ergodic if its mean or covariance or variogram
coincide with the corresponding spatial averages calculated over the single
available realization which is the sample value at each location. If we have non-
ergodic behaviour in our data we should modify the definition for variogram
(Deutsch, 2002).

" Non-ergodic covariance:

N(h)
CNE(h)_ﬁ Z_llz(u,)z(ui FR) =M M (2.7)

" Non-ergodic variogram:

Ve (N)=C(0)=Cpe(h) i, (2.8)

. Non-ergodic correlogram:
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Modified Variograms in the case of Outlier Data

Outlier data can significantly affect variogram estimation. Use of an extreme value in
variogram estimation can amplify the effect because the squared difference between a
data pair is used. If the difference between a given pair is several orders of magnitude, the
squared difference is large enough to influence the estimated variogram at a particular lag
distance. This may create instability in the variogram estimation and also may prevent us

from clearly identifying the spatial structure.

We have two options for dealing with the outlier data. The first option is to remove the
outlier data point from the estimation process. While this is the simplest option, it is
reasonable only if we have a physical reason for its omission. The second option is to use
some type of nonlinear transformation to minimize the variation. These include the log,

power, rank, indicator and normal score transforms (Kelkar and Perez, 2002).
e Log transform

The most commonly used transform is to use the natural logarithm of the sample
value. Log transform is simple to use but may create difficulties in estimating

value at unsampled locations. Our semivariogram formula then becomes:

1 No
2N(h) &

[Iog[z(ui)]—log[z(ui+h)ﬂ2 ............................... (2.10)

7L(h):

e Power transform

In this transformation the original value,z(u;), is replaced by (z(ui))p.
Therefore the corresponding variogram is:

1 N(h)

¥er (D)= N() & [(z(ui))p ~(z(u, jth))q2 .................................. (2.11)

where p is a positive number and less than 1. The smaller the power we use, the
smaller the variation of the data values. The most commonly used value of p is

0.5, which represents the square root of the sample data value.
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Rank transform

To calculate the ranking of a given sample value, all the sample data are arranged

in an ascending order. The rank of the i value in the sequence is calculated by

Where n is the total number of sample points and R, is the rank of the i value in

sequence. Using the rank transform ensures that no significance difference exists

between sample values because all the sample values fall between zero and one.
Indicator transform

The indicator transform allows transformation of a continuous variable into a

discrete variable. Indicator transformation is defined as below:

By specifying multiple threshold values, we can define multiple indicator values
at each threshold. Defining each sample point in terms of either zero or one
eliminates the effect of outlier data. One disadvantage of defining the indicator
values is that the exact differences between the data values in a particular class are
lost. Defining additional thresholds can approximately remove this disadvantage.
In addition to removing the outlier data, indicator transformation has two more
advantages. First, by appropriately defining the thresholds values and estimating
the indicator variogram at each threshold, we can examine how the sample values
are connected at different thresholds. For example, we may observe that the low
values exhibit better continuity than high values. Another advantage for indicator
transform is that we can transform our qualitative data (rock type) to quantitative
data (0 and 1).
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e Normal score transform

The normal score transform allows transformation of sample data into equivalent
data that follow a normal distribution with a mean of zero and the variance of 1.

The normal score transformation is:

Xys = G 7H(F (X)) orrrere oo (2.15)

Where G’l(-) is the inverse of the standard Gaussian cumulative distribution

function and F(x) is the global cumulative distribution function of the sample

data.

After this transformation the normal score values can be used, X, , instead of the

original values to calculate the semivariogram. With this type of transformation
we can remove the outlier effect in our data. Another advantage for normal score
transformation is that the certain estimation techniques work better with normal
score transformed data. After obtaining the estimation with the transformed data,

we can back-transform the data to original variable values.

2.2 Calculating and fitting the experimental variogram

After getting an idea about the direction of continuity in our data set, the experimental
variograms in two main directions of continuity are calculated. This calculation needs
reasonable tolerance parameters. These tolerances are defined in this section. They can be
obtained by some logical decisions, but in the next chapters a methodology will be

presented to optimize these tolerance parameters.

In order to use variograms for estimation and simulation, we need a model which
represents the spatial variability. Common practice consists of fitting experimental
variograms with a nested combination of proven models such as the spherical,
exponential, and Gaussian models. Both hand fitting and semi-automatic fitting (by using

varfit; Neufeld and Deutsch, 2004) can be used to model the variogram.
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Variogram tolerance parameters

Choosing the tolerance parameters in the case of irregularly gridded data is complicated.

As mentioned before, the goal of this study is to find a smart way to optimize these

tolerance parameters in the case of irregularly spaced data. The tolerance parameters

should be chosen in such a way that there is enough number of pairs for a reliable

variogram value. Usually in real cases there are more data in vertical direction than

horizontal direction; therefore it is better to separate these directions. The tolerance

parameters are different in these two cases.

Tolerances in vertical directions

There are four tolerance parameters in this case; they are (Deutsch, 2002):

Unit lag separation distance, h (h is a scalar quantity); it is equal to data spacing in
the case of regularly spaced data. In petroleum applications, the vertical data are
regularly spaced, therefore choosing the unit lag separation distance is not a

problem.

The distance tolerance, hy, (Similar to h, hy is a scalar quantity); in real case this
parameter usually takes the values of0.25h, 0.5hand0.75h . The value of 0.5h is
used in almost all of the cases. The value of 0.25his used when there are many
data on a nearly regular grid and in the case of small number of pairs for each lag,
it is recommended to use0.75h. In next chapter this parameter will be optimized

to have a value between 0 and h.

The angle tolerance, ay; this parameter is used when there is some deviation from

vertical direction.

A bandwidth parameter, b; this parameter is defined to limit the region for finding
data pairs for variogram calculation in vertical direction. After a certain lag
distances bandwidth parameter is applied to limit the tolerance region.
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Tolerances in horizontal directions

There are six tolerance parameters in this case; they are (Deutsch, 2002):

Unit lag separation distance, h; the properties of this parameter are the same as

vertical case.

The distance tolerance, hy; the properties of this parameter are the same as

vertical case.

The horizontal angle tolerance, a"; this parameter can be applied to limit the
direction which we are interested to calculate the associated variogram. In the
case of omnidirectionality, it can be set to 90 degree or a greater angle to have all
of the points in horizontal plane. The omnidirectional experimental variogram

averages the variability over all directions.

The horizontal bandwidth, bpo; similar to the vertical bandwidth, it is used to
define a limited tolerance region in horizontal plane. In the case of
omnidirectionality, the horizontal bandwidth should be set to a large number to
have all of the points in all directions to calculate the omnidirectional variogram

value.

The vertical angle tolerance, a‘, used to define an angle tolerance about the
horizontal plane. It should be set to a small value because of the large variability
in vertical direction which can affect the true variogram calculation for a specific
stratigraphic layer.

The vertical bandwidth, ber; this bandwidth relates to the vertical angle tolerance
and is defined to limit the stratigraphic layer. It should be set to a small value to

have a good approximation of the variogram.

For both vertical and horizontal lag distances, the number of distance lags should be

chosen in such a way that the total distance used for variogram calculation is about one
half of the field size.
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Remarks

The choice of variogram model has a major affect on kriging and kriging-based
simulation. All the methods for modelling the spatial variability have some advantages

and may screen artifacts from sparse data, non-stationarity, outliers, etc.

19



Chapter 3

Improving Variogram Calculations

3.1 Methodology and principles

The GSLIB (Deutsch and Journel, 1998) program, gamv, can be used to calculate the

experimental variogram points for a given irregular data set. The user should define some

tolerance parameters (see section 2.2) based on the data locations to calculate the

experimental points. The parameter file for gamv is written below:

Parameters for GAMV

LR EE R SRR SRR EEEEE SRS

START OF PARAMETERS:

data.dat -file with data

1 2 0 - columns for X, Y, Z coordinates
1 3 - number of variables,col numbers
-1.0e21 1.0e21 - trimming limits

gamv.out -file for variogram output

10 -number of lags

10 -lag separation distance

5 -lag tolerance

1 -number of directions

0.0 90.0 400.0 0.0 90.0 400.0 -azm,atol,bandh,dip,dtol,bandv

0 -standardize sills? (0=no, l=yes)

1 -number of variograms

1 1 1 -tail var., head var.,variogram type

The bolded texts are the parameters which are used to define the tolerance parameters.

They should be changed properly in the case of 2D or 3D data set to get a reasonable and
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meaningful variogram. By changing each of these parameters the result would be
different. There should exist a set of tolerance parameters that can give a reasonable
result close to the true variogram. It means that after fitting the experimental points the
variogram model should have minimum error when comparing to the true variogram.

This minimization should be carried out for different sets of tolerance parameters.

As was explained in Chapter 1 the goal in this study is to introduce a methodology to
improve variogram calculation and fitting. By improving we mean that the final fitted
variogram has less error for the optimized tolerance parameters compared to the true
variogram which is almost always unknown. The main algorithm for this improvement is

illustrated below; the algorithm has 6 steps to update the experimental variogram points.

Optimizing the tolerance parameters
\J

Calculating experimental variogram

by using the optimized tolerance parameters
\J
|Fitting experimental vario gram|
2
|Calculating the tolerance correction factor|
\J
|Rescaling the experimental variogram points|

\J

Refitting the rescaled experimental variogram

Each step is discussed briefly in next section.
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3.2 Implementation aspects
3.2.1 Optimizing tolerance parameters

To optimize the tolerance parameters a penalty function is defined and the optimal
tolerance parameters are obtained by minimizing this penalty function. This penalty
function gives a penalty for each set of parameters, this can be obtained by adding all of
the errors (between the fitted variogram and the true or assumed to be true variogram)
associated to each lag distance (and for each set of parameters). Figure 3.1 shows
schematically the difference function between the fitted variogram and the reference

variogram which is used in the definition of the penalty function.

_Fitted Variogram vs. Reference Variogram

1.00

0.60_]

020
/
: v 40, 80. 120.
T T T T T T T 1
-0.20_ Lag distance (m)

Figure 3.1. Fitted variogram (dotted line) versus the reference variogram (dashed line) and their
difference (fitted minus reference; solid line)

So the error can be written in integral form as below:

2a

1 i re
Proy (0) =5 [ [, (h:0) =7 ()] -wt(h)-dh oo (3.1)
0
Where:
- (6) ;  Penalty function for thei,,, realization and set of tolerance parameters &

realz ;  Realization number

0 ;A set of tolerance parameters

22



a ;  Reference variogram range

fit

Vi (h; 49) ; Fitted variogram of the experimental variogram points based on the
tolerance parameters é.

7™ (h) ;  Reference variogram

wt (h) ; Inverse distance weight associated to each lag distance

The inverse distance weighting associated to each lag is calculated from below formula:

! ; for h suchthat ™ (h;60) > »™ (h)
wi(h)={N*E (3.2)

0.5 i
;  forhsuchthat y™(h;0) <™ (h
el or h such that ™ (h;0) < »™ (h)

The reason for inverse weighting of the difference between the true variogram and the
reference variogram is that the small lag distances which show the short variability get
more weight and the large lag distances get less weight. The small number, ¢, is used in
the denominator because in this case the weight at h=0 can be defined (which is a large
number). & has different number of components depending on 2D or 3D cases. In 2D
case @ has at most 4 components: lag separation distance, h, lag tolerance, hyy, angle
tolerance, ai, and the bandwidth, b. In the case of omnidirectionality where the angle
tolerance is 90 degrees and the bandwidth is a large value, € has 2 components of lag
separation distance and the lag tolerance only. These four parameters are shown in Figure

3.2.

In 3D case since we are dealing with vertical and horizontal (minor and major) directions,
therefore two different sets of parameters can be defined. For the vertical lag distance
(Figure 3.3.) @ has at most 4 components these are the unit lag separation distance, h, lag

tolerance, hy, angle tolerance, ay, and the bandwidth, b.
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Figure 3.3. Lag separation distance, h, lag tolerance, hy,, angle tolerance, ay and bandwidth, b in
three dimensional case-vertical lag distance
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For the horizontal lag distance (Figure 3.4) € has at most 6 components: unit lag
separation lag distance, h, the lag tolerance, hy, the vertical angle tolerance, a'y, the
horizontal angle tolerance, aht0|, the vertical bandwidth, by, and the horizontal bandwidth,

bror. The number of components can be decreased in case of omnidirectionality or in the

case with no bandwidth.

Figure 3.4. Lag separation distance, h; lag tolerance, hy,; vertical angle tolerance, a'y; horizontal
angle tolerance, ahto|; vertical bandwidth, by and horizontal bandwidth, by, in three dimensional
case-horizontal lag distance

Besides the tolerance parameters another parameter can be defined in order to capture the
relationship between the tolerance parameters and the penalty function. This parameter
which is named tolerance ratio is a function of all of the tolerance parameters which are
used to calculate the experimental variogram. A tolerance ratio is equal to the tolerance
area (in 2D case) or volume (in 3D case) divided by the area or the volume of the semi-
circle or hemi-sphere with a radius of 2h (h is the unit lag distance). For example this
tolerance ratio is 100 % in the case of the calculation of the omnidirectional variogram
(the only tolerance parameters are unit lag distance and the lag tolerance) with the lag
tolerance, hy, which is equal to unit separation lag distance; h. Figure 3.5 schematically
explains the tolerance ratio in 2D case. The tolerance ratio will be used as one of the
parameters for optimizing the tolerance parameters. In general there are two different
cases for calculating the tolerance ratio; 2D (omnidirectional and general case) and 3D
(omnidirectional, horizontal and vertical lag distances). These cases are shown in Figures

3.2,3.3 and 3.4.
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In next sections the formulas for tolerance ratio are given for different cases. The proofs

for 3D are presented in Appendix A.

3.2.1.1 Tolerance ratio in 2D
Omnidirectional case

In this case tolerance ratio depends only on unit lag distance, h and the lag
tolerance, hy. The bandwidth and the angle tolerance should be set to a large

number and 90 degree in order to calculate the omnidirectional experimental

variogram by using gamv program in GSLIB. The area function A(r) is the area of

the semi-circle with the radius of r. (see Figure 3.5)

Therefore the tolerance ratio is:

_ A(h—l—htol)_A(h_htol)_h
Tol = el =T (3.4)

Tol %=Ag, /Aq

Figure 3.5. Tolerance ratio for two dimensional case
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General case

In this case the tolerance area is function of unit lag distance, h, the lag tolerance,
hiwo1, angle tolerance, ay and the bandwidth, b. Depending on the magnitude of the
unit lag distance, h, three cases would be happen. To specify these three cases
another parameter, h*, can be defined which is function of the angle tolerance, ayo

and the bandwidth, b. h* can be calculated by using below formula (see Figure 3.2):

It can be seen from Figure 3.2 that whenh < (h* - h[ol), the tolerance area is made

by using the unit lag distance, lag tolerance and angle tolerance (note that the

tolerance area in this case is independent of the magnitude of bandwidth). If

h> (h* + hml) the tolerance area is function of unit lag distance, lag tolerance and

bandwidth (in this case the tolerance are is independent of the magnitude of angle

tolerance) and if (h* -h,, ) <h< (h* +hy, )then the tolerance area is function of all
four tolerance parameters.

The three cases for different lag distances can be defined as:

1. h<(h'=h,);

A () =T (3.6)
_Al(h+htol=atol)_Al(h_htolﬂatol)_ 2a~t0| . h

L R A L T— o

Aol 1S 1n radians.

2. h>(h"+hy);

N N N CRE ) Eomm—— 65
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_ A(h+hy,b)-A (h-hy.b)
Tol = AG) (3.9)

3. (N —hy)<h<(h"+h,);

Al(h*’a[O')_Al(h_hlol’a‘lol)+Az(h+h[0|;b)_Az(h ,b)

Tol= A(2h)

3.2.1.2 Tolerance ratio in 3D
Omnidirectional case

Similar to the 2D case, the tolerance ratio only depends on the unit lag distance, h,
and the lag tolerance, hyy, in this case instead of area function; the volume function

should be defined which is equal to the volume of the hemisphere with a radius of r.

Therefore from equation 3.11, we will have:

To,:V(h+no.)—v(h—n0|):l.(h){ﬂ(hﬂ ............................ (3.12)

V (2h) 4 h

General case

For the general 3D case, two scenarios can be considered; the first one is for the
vertical lag distance (Figure 3.3) and the second one is for horizontal lag distance

(Figure 3.4).
a) Vertical lag distance

In this case the tolerance volume is a function of unit lag distance, h, the lag
tolerance, hy, angle tolerance, ay and the bandwidth, b (see Figure 3.3). Based

on the magnitude of the unit lag distance three different cases exist.

1. h<(h'=hy);
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Tol :Vl(h+htol’atol)_Vl(h_hlolﬁatol)
V (2h)

..................... e (3.14)

Therefore from equations 3.11, 3.13 and 3.14, we will have:

Tol:%-(1—cosam,).(hﬁ'j-[3+(%ﬂ ....................................... (3.15)

2. h>(h"+hy);

Vz(r,b):zT”- 1—(1—(% ]2 T (3.16)

rop Va(n+hy b)Y, (h=h.b)

V) (3.17)
3. (h"=hy)<h<(h"+hy);
rot < AT ) M (1) Vo (04 o ) N (00) 6.18)

v (2h)

b) Horizontal lag distance

In this case the tolerance volume is a function of the unit lag distance, h, the
lag tolerance, hy, the vertical angle tolerance, a'to1, the horizontal angle
tolerance, ahto|, the vertical bandwidth, by and the horizontal bandwidth, bpor

(see Figure 3.4):

Tol = f (1, @ 8 e By ) v (3.19)

As before the magnitude of the unit lag distance results in different scenarios:

bve r

sina,,

1. hg(hjer_htol); (h:er: )
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2
V3(r,a,ﬂ):?ﬂ-[l—Il(a,,b’)]ﬁ ............................................. (3.20)
Where

2 2 2 2 2

1 2z cot"a-cos”@+cot” f-sin" 0 )2
| (a,p)=—"+ d@ . 3.21
(@f) 27 90 (1+c0t2a~coszl9+cot2,6’~sin26’J 3:21)
Tol = (h+ o2 2) Vs (M-hoodbod) (3.22)

v (2h)
Therefore from equations 3.20, 3.21 and 3.22, we will have:
! 7. o hy |

Tol =Z.[1—|1(a{;|,atol )](T'MH(T'} } ................................ (3.23)
2. (Wer+|’1tol)<hg(h;0r_hlol);
v4(r,b,a):27”-{1—|2(r,b,a)—3smT(2“).($ﬂr3 ........................ (3.24)

Where

2 2
csc’ - cos? 6-{[';) -sin’ @ -1
do

1 2z
Iz(r,b,a):—-.[ e
csc’ a - cos’ 9+[bj -sin* @

V4(h+hol’bver’atrél)_V4(h_hlol’bver’atrcl)l)

Tol = V (2h)

3. (h:er_hol)<hg(h;ker+hol);

Tol :V3 (h\:kerﬂa‘tgha‘t\gl)_V3(h_htolﬂatr;I’at\gl)+V4 (h+ htolﬂbver’atr;I

e (3.25)

) _V4 (h;ker > bver > at?‘)l )

v (2h)

........................................................................................ (3.27)
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2
Vs(r,a,b)—T” [1=1y(rab)]r* e (3.28)
Where
3
r 2 r 2 2
- [) -cos26?+(bj -sin* @ -1
I (rab)=—[ "2 . A0 i, (3.29)
T (E) et ee{g) o
— | cos“@+|— | -sin" @
a b
Tol = Vs (h + o Bror B ) Vs (h M ’bhor’bver) .............................. (3.30)
V(2h)

5. (h;or_hol)<hg(h;or+hol);

_ V4 (h:or s bver s at?)l )_V4 (h - I"ltol s bver s at?)l )+V5 (h + I"ltol s bhor s bver ) _VS (h;m » bhor > bver )
V(2h)

3.2.1.3 Methodology
The whole procedure for optimizing the tolerance parameters is as below:

1. Use spatial bootstrap (Deutsch, 2004) to obtain L values (realizations) for each of

the data locations.

2. Determine different reasonable sets of tolerance parameters for variogram

calculation.
3. For each set of tolerance parameters and each realization:

a. Calculate the experimental variogram.

b. Fit the experimental variogram with a variogram model, 7/i,fei;z (h;&’), by

using varfit program (Neufeld and Deutsch, 2004).

c. Calculate the penalty function, p, (&), by using equation 3.1.
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For each set of tolerance parameters, calculate final penalty by averaging over

different calculated penalty for different spatial bootstrap realizations.
Map penalty function as a function of tolerance parameters.

Find the optimum tolerance parameters by minimizing the penalty function.

Spatial bootstrap

Spatial bootstrap (Deutsch, 2004) is used to assess and quantify the uncertainty in the

variogram at each lag. The spatial bootstrap procedure is as follow:

1.

4,

S.

Preliminary analysis:
a. Assemble the representative distribution of the random variable Z, F(2);

b. Define a 3-D variogram model y(h) of the normal scores of the random

variable Z;

c. Decompose the n by n covariance matrix by the Cholesky decomposition

into product of upper (U) and lower (L) triangular matrices: C = LU

Generate a new set of data, z, as

2=, (G(LW)) oo (3.32)
where W is a n by 1 vector of independent Gaussian values and G(-) denotes the
standard Gaussian cumulative distribution function.

Calculate the statistic of interest from the resampled dataset.

Repeat Steps 2 and 3 many times, say, L=100.

Establish the distribution of uncertainty in the calculated statistic.

This uncertainty has effect on the selection of the optimal tolerance parameters. The

penalty function, p; (0) , can be calculated for different realizations which are output of

spatial bootstrap. Spatial bootstrap needs the original data and also the reference

variogram to create different realizations. This reference variogram is the same as

7™ (h) which is used to calculate the penalty function, p; (49) . Basically to obtain the
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tolerance parameters for a given data set first the spatial bootstrap is performed to get
different realization at each data location. Two assumptions are made before performing
spatial bootstrap; the first one is that the initial data distribution is representative of the
entire population and the second one is that the data are spatially correlated; this spatial
correlation is represented by the reference variogram which is unknown and also is not
modeled at the first step of the tolerance parameters calculations. In chapter 4, a
sensitivity analysis will be shown for a real data set on how to choose reasonable
variogram range and nugget effect for a single spherical structure for the reference
variogram model. The reasonable assumptions for the variogram model could be single
spherical structure with range of one-third of the variogram range. Declustering
techniques might be performed to get the weights for the data points. Spatial bootstrap
needs the distribution of the original data. The cumulative distribution function of the
data is required for randomly drawing the data values for the bootstrap. After determining
the reference distribution and variogram the spatial bootstrap can be applied to get L

realizations for each of the data locations.

Experimental variogram calculations for different tolerance parameters

The GSLIB program, gamv, can be used to calculate the experimental variogram for
different tolerance parameters. Reasonable range for tolerance parameters should be
defined for calculations. This range should contain the optimal tolerance parameters. The
range for unit lag distance or lag separation distance can be obtained by building the
cumulative distribution function of the minimum distance between the data locations.
There is just one value for the minimum distance which corresponds to a data location.
The minimum distance between the data points is calculated as:

d = min{‘u.

Igat, ldata Jdata

D5 g # Jae 80 g o = 12300 Mg oo (3.33)

where d; is the minimum distance between the data points which corresponds to each

u -—-u

data location, |u; o ‘
ata ata

is the norm of the separation vector between data locations igata

and Jgata. The cumulative distribution function for didata can be built and the reasonable
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range of values for unit lag separation distance can be obtained by using this distribution.

The values between P10 and P90 of the d; values are used for different lag separation

distances. Because of the CPU cost, the number of unit lag distances for different
variogram calculations, np, should not be large. To cover the whole range and test
different lag separation distance, the following relationship is considered for calculating

the unit lag distance for different cases.

h:(P90—P10

J-ih+P10 S = 0,12, M el (3.34)
r]h

Where h is the unit lag distance, P10 and P90 are the distances calculated from

distribution of d; . n, is the number of different unit lag distance used for calculating the

optimal one and i is the index for n,,.

For the range of the lag tolerance, the values between 0 % and 100 % of the unit lag

distance are used. Therefore

i .
hy, :[ntij'h S T 1S | WO (3.35)

tol

where n,1s the number of different lag tolerances used for calculating the optimal one.

Similar ton,, n,, should not be a large number for CPU efficiency.

tol

For azimuth tolerance and dip tolerance, we can use values between 0 and 90 degrees.
The increments can be defined to calculate different angle tolerances. Again the number
of increments has impact on CPU time. The range for horizontal and vertical bandwidth
can be estimated by using some geological information. In the case of lack of geological
information the minimum and maximum possible values for the bandwidths can be
considered. The maximum possible value for horizontal bandwidth can be the maximum
areal dimension of the field and for the vertical bandwidth it is the thickness of the
stratigraphic layer. After obtaining reasonable ranges for the tolerance parameters, the
experimental variogram is calculated for each set of tolerance parameters and for each

realization obtained from spatial bootstrap.
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Fitting the experimental variogram for each realization

In this step the compatible GSLIB program, varfit (Neufeld and Deutsch, 2004), is
used to fit the experimental variogram points with an optimized variogram model, the

experimental points are different for different tolerance parameters and different

fit

realz

realizations. The fitted model, y; (h; 9) , is used to calculate the penalty function.

Calculating and minimizing the final penalty function
First the penalty function (see equation 3.1) is calculated for each realization and each set
of tolerance parameters. After calculating these penalties the final penalty, ﬁ(@) which is

function of tolerance parameters is calculated by averaging the calculated penalties over

different realizations for the fixed tolerance parameters. Therefore

_ 1 Nreal
p(o) = DB (6) (3.36)
realz irea\Iz =1
where n,,, is the number of realizations, @ corresponds to the fixed tolerance parameters

and p, (9) is the penalty for realizationi_, and is calculated by using equation 3.1.

realz

After calculating the final penalty, it should be minimized to get the optimal tolerance
parameters. The tolerance parameters have different number of components for different
cases. For example for omnidirectional 2D and 3D data sets, there are two components
for variogram calculation, they are unit lag distance and the lag tolerance (instead of lag
tolerance the tolerance ratio can also be used). For other general cases the number of

tolerance components is greater than 2.

For minimizing the penalty function in the presence of multiple variables a sequential
type approach could be used to obtain the optimal point which minimizes the penalty
function. For example if there are three variables, at first step two of them should be fixed
and the penalty should be minimized with respect the variable which is not fixed. After
specifying this point the next variable should be optimized and the others should be fixed.

This procedure can be applied step by step to get the final optimal point and as mentioned
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at each step one of the variables should be optimized and the others are fixed and each of

the variables is optimized once.

After obtaining the optimal tolerance parameters, the experimental variogram should be
calculated by using the optimal tolerance parameters and fitted with the varfit

program.

3.2.2 Calculating the tolerance correction factor

Calculating the experimental variogram by using some tolerance parameters affects the
estimated value of the maximum and minimum range of continuity (after fitting). It can
be proved mathematically that for example in 2D case, the true maximum range of
continuity is underestimated and the true minimum range of continuity is overestimated.
The amount of increase/decrease refers to the tolerance correction factor. So in general
case the calculated experimental points are artificially shifted to the left in major
direction and to the right in minor direction. The analytical formulas for 2D and 3D cases
are presented in this section; the proofs for the analytical relationship are given in

Appendix A.

3.2.2.1 Tolerance correction factor in 2D without bandwidth

Assume that the ellipse in Figure 3.6 shows the anisotropy of the variable in a specific 2D
field. The field has a maximum range of correlation of a, _ (the maximum radius of the
ellipse) and the minimum range of correlation ofa, _, . If we introduce an angle tolerance
ofa,, , then the tolerance will cause an underestimation of a, __and an overestimation
ofa, ... Therefore the anisotropy ratio will artificially decrease just because of
introducing tolerance parameters. For example if a, =4 and a, _ =1 (the anisotropy

ratio would be 4:1) then introducing an angle tolerance of 22.5 degree will underestimate

&, .. t0 3.18 and overestimate a, . to 1.02 and the apparent anisotropy ratio would be

3.1:1.
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Figure 3.6. True Anisotropic ellipse (solid) and the estimated anisotropic ellipse (dashed)

in 2D case when there is no bandwidth

The relationship between the true range of correlations (a,_,.., .., ) and the estimated

range of correlations (a, ., & ) is derived. The estimated value for the range of

correlation is the average of the radii in the tolerance region over the tolerance region.

Therefore the estimated values can be written as:

8ol

a* — _atol

h-max = a
]

%*’am
j rdé
— 8ol

*
a'hfmin
-+l

[ do

z
E_atol

37



By using the equation for the ellipse in polar coordinate the integrals can be solved,

therefore:
(o) (5]
A e = s By e (3.39)
atol
. F , @
By i = B min -% > By i et (3.40)
ol

Where o is the eccentricity of the ellipse and has a value between 0 and 1 and calculated

as below:
a2

W= [I=—20 0 <@ S B e (3.41)
ah—max

And F (a, a)) is the incomplete Legendre elliptic integral of the 1* kind and is defined as

below (Abramowitz and Stegun, 1965):

The values for the incomplete Legendre elliptic integral of the 1% kind are tabulated in
many mathematical handbooks (e.g. Abramowitz and Stegun, 1965). This function can be

also calculated numerically by using the code provided in Numerical Recipes in Fortran

77 (Press et al, 1992).

By using the obtained formulas for a;, . anda.__, the estimated anisotropy ratio can be

written as below:

o F(Z,wJ—F(Z—aml,a))
homa S N e, (3.43)
ah—mir\ F (a‘tol ’ a))
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. ... @ 1 . . .
We know that the true anisotropy ratio is —=2% = =, since &, ;, is overestimated
h—min l-w

%

. . a .
oo 18 underestimated therefore —=™2 will be decreased, therefore:

h—min

and a

*

Bnma o Bnma (3.44)

*
ah—min ah—min

It can be proved that, F [%, a)j -F (%— Ay a)) =F (arctan (tan—awlzJ , a)] (Abramowitz
l-w

and Stegun, 1965) therefore the equations 3.39 and 3.40 can be written as below:

F| arctan (ma“"J , @
1- @

A e = B iy e (3.45)
a'tol
tan
F [arctan( ol J, a)j
nmax _ o (3.46)
ah—min F (atol s a))

. . C 15
For example ifa, =4, a, . =1,48,=225 =% then the eccentricity is, w =—— and

by using the derived formulas for the estimated ranges of correlations, we have:

£l 7 J15 _E 3z J15
. 27 4 8’
Ay = 1% =3.184601
z
5)
) 8 4
a . =1x =1.024952

i
8
It can be seen that a; . >a __ and a __<a,  therefore the anisotropy ratio is also

decreased:

39



B 3184001 5 57073 < Bromae g oy Pme B
a'h—min 1 02’4952’ ah—min a'h—mir\ ah—min

The more important problem in the case of the variogram calculations is what the true
values for the minor and major direction of continuity are if we know the estimated
values for them. In almost all of the cases we know the estimated values. To do that we

should solve the derived relations for calculating the a, . anda, . by knowing,

ah—min H ah—max and a't0| .

We know that:

F arctan{ tan &y ] @
a‘;—max _ M 1- 0)2 ’

a:—min F (atol ’ a))

After rearranging:

*

f (a)):(agﬂj.F(atol’a))_F(arctan[tan—amgj’wjz() ................................. (347)

h—min -

The values for,a, . ,a __ and a, are known therefore the above equation can be solved
to calculate @ which has the value between 0 and 1. Bisection method can be used for
finding the root of f (@). After finding the actual eccentricity, the true a,_, anda,_ ..

can be calculated as below:

a, =Snmn ol ) (3.48)
" F (atol ’ a))
By = (3.49)
l-w
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3.2.2.2 Tolerance correction factor in 2D with bandwidth

In this case since a bandwidth is introduced therefore two different apparent angle
tolerances should be used instead of the true angle tolerance in both of the minimum and

maximum directions of continuity. These two apparent angle tolerances are calculated as

app

below. The apparent angle tolerance for maximum direction, is shown in Figure

ol,max *
3.7.
a0 b 3.50
ol max = arctan b2 ............................................................. ( . )
a 1-
o \/ aﬁ—min
app b
Qo) min = arctan e (3.51)
A ina 1=
o aﬁ—max

where b is the bandwidth.

It is obvious that b should have a maximum value, if we want to see its effect on

variogram calculation in the presence of anisotropic ellipse. For calculatingag”  , the

maximum value of b is equal tob_, . b_. is indicated in Figure 3.7. It is function of the

min

a,,a,.and a__ . b iscalculated as:

min

D = A e e (3.52)
\/ 1 N tan’ a,,
a’ a’

h—max h—min

The bandwidth, b, in this case is satisfied in below inequality:

b<b’

min

< a'h—min

And for calculatinga® | the maximum value of b is equal tob__ . It is function of the

ol ,min *

A, &, . and a b’ is calculated as:

h—max *
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Dy = P (3.53)
tan” a,, 1

+
a a

h—max h—min

The bandwidth, b, in this case is satisfied in below inequality:

b < bmax < a'h—max

{e"f?‘f)
tol ,max

Figure 3.7. Anisotropic ellipse in 2D case with bandwidth for maximum direction of

continuity

The formulas for estimated range of correlation in two major directions in the case of

bandwidth reduce to:
F (50 )-F(5-aifo)
a . =a_ . - B (3.54)
a‘lol,max
* F ( ?)‘ijmin > 0))
B min = Bnmin T Tapy > Bl e (3.55)
ol,min

To obtain a, . and &, a system of non-linear equations should be solved. In addition

to above two formulas for a, . anda, ., there are three auxiliary equations for
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calculatingag” .. a’’ —and @ which were given before. The known parameters are the

values for the bandwidth, angle tolerance and the estimated ranges.

3.2.2.3 Tolerance correction factor in 3D without bandwidth

In 3D tolerance case in addition to obtaining the relation between the true and the
estimated ranges in horizontal (maximum and minimum directions of continuity)
direction, the relationship should be obtained for vertical direction as well. The idea for
calculating the estimated ranges are the same as in 2D case but the relations are more
complicated. The required integrals are written in spherical coordinates, therefore for

horizontal direction we have:

a:r& 7—¢(0)

>
=
i)
o
S
o
S

And for vertical direction:

27 A

| pdgdo

B = (3.58)
[ dgdo

0 0

Where p is the distance from the centre of the ellipsoid to its circumference in spherical

coordinate and ¢ (&) and ¢, (8)are:
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¢(0)= arccot(tan2 ay, -\/1 —(1 +cot”al, ) -sin’ (9) .............................................. (3.59)

¢,(0)= arccot(tan2 a, -\/1—(1 +cot”a), )-cos2 9) ............................................ (3.60)

After integrating and applying the boundaries of the integrals for horizontal direction we

will have:

And for vertical direction we have:

o aver _2” A
Y = ora _([F(ato,,col (8))-0 oo (3.63)

Where @, (0)and w, (0) are calculated as:

2 2
o (0)=1- [ ailver ] —( = afeéz ] ~(aﬁ_max —a . ) SIN% 0 i, (3.64)
h—max h—min h—max
2 2
0, (0)=1 —( a?%f j - [ = afeéz j (2 s~ B ) €087 0 (3.65)
h—max h—min h—max

In the case that the angle tolerances and the estimated values for the ranges are known

then by solving the three non-linear equations (equations fora, . ,a  anda, )

simultaneously, the three unknowns(a, . ,a, . anda,, ) can be determined.
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3.2.2.4 Tolerance correction factor in 3D with bandwidth
In the case of bandwidth in 3D, for horizontal direction, two cases might happen:
1. There is vertical bandwidth (byer) but no horizontal bandwidth (bnr) is applied.

In this case the vertical bandwidth introduces two apparent angle tolerances,
agw, andag’™ - instead ofay, . These two apparent angles are different because

of the minimum and maximum directions of continuity and calculated as:

b
gy, = arctan ﬁ ......................................................... (3.66)
ah—min 1- f
er
b
o, = arctan e (3.67)
ah—max 1 - %
a'ver

. * *
The equations for a, . anda, , are

8|
a‘;—max = aa::r ’ J- |:F(7Z-_¢1(9)’a)1(9)) F(¢1(0),CO1(9)):| de
78 2_[ 4(0)-do 0
..................................................................................................... (3.68)
a:—mm = ?};er F(”_¢2 ((9),(02 (9))_F(¢2 (6’),0)2 (0))} deo
zay-2[¢,(0)-do "
..................................................................................................... (3.69)
where ¢ (6)and ¢, (0)are calculated as
¢ (0)= arccot(tan2 e -\/1 —(1 +cot’ @), )-sin2 9) ................................ (3.70)
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¢, (0)=arccot[tan® @™ . [1—(1+cot’a )-cos @ |......covvvuiiiiineian, (3.71)
2 a‘lol,mm aTOI

. Both of the horizontal and vertical bandwidths are present.

In this case four apparent angle tolerances are introduced two in minimum
directions, a, " anda ™ , and two in maximum directions, ag ;> andag" .
The equations for ag ' andag are the same as before but for

a™ anda’®™ we have:

,min ,max

b
agy ™ =arctan hot e (3.72)
a 1— bhor
h—min 2
a'hfmalx
h = arct Dro 3.73
Qo max = Arctan R (3.73)
h
a‘h—max 1- 2 o
ah—min

And finally the formulas for a, . anda;___ are

B
a;—max = a;/lzzmx : J. I:F(ﬂ-_¢1(0)’a)l(9))_F(¢l(0)’wl(0))]de
zay® -2 [ 4(0)-do "
0
..................................................................................................... (3.74)
a5
8 = S [ [F(7-4,(0).0,(0)~F (4,(6).0,(0))]-do
z-ay® -2 | 4,(0)-do
0
............................................................................................................................ (3.75)
where ¢ (6)and ¢, (0)are calculated as
¢ (0)= arccot(tan2 e -\/1 —(1 +cot” ay™ ) -sin’ 9) ................................... (3.76)
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¢, (0) = arccot (tan2 Ay ~\/1 - (1 +cot” ag™ ) -cos’ (9) ................................... (3.77)

3.2.3 Rescaling the experimental variogram points

In 2D case, the tolerance correction factor in the two minor and major directions of

continuity can be calculated as:

£ Zg—mm .................................................................................................................. (3.78)
h—min

o= Zt:—max ................................................................................................................ (3.79)
h—max

These factors in minor and major directions should be applied on all of the calculated
experimental points therefore the lag distance axis on variogram plot for major and minor

directions should be rescaled:

It should be noted that the variogram values are not changed, the plot is just shifted
horizontally to the left or to the right depending on the minor or major directions of

continuity.

For 3D the optimal experimental lag distances should be updated and a variogram should
be fitted again. The new lag distance should be obtained for three different directions:
minor, major and vertical directions. The tolerance correction factors for minor and major
directions are the same as equations 3.78 and 3.79, respectively. For the vertical

direction, the correction factor is:
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After rescaling the lag distance axis in all of three directions and updating the

experimental points, a variogram should be fitted by using varfit.
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Chapter 4
Application

4.1 Synthetic case

In this synthetic example a 2D data set is considered and we are trying to find the
optimum parameters for calculation of experimental omnidirectional variogram, the
parameters which can be changed are the lag distance, h and lag tolerance, it should be
noted that the angle tolerance is 90 degree and the bandwidth is set to large number to get

the omnidirectional variogram.
Problem Setting

A synthetic 2D Gaussian random field (Figure 4.1) is generated via an unconditional
simulation for a 1024 x 1024 grid with the following isotropic variogram as a reference

variogram:

»(h) = 0.05+0.955ph, , (|h[)

-2.00
-2.50
-3.00

" B . X s -
0.0 East 1024.00

Figure 4.1. Map of reference model generated by sgsim
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Sph, ¢, (|h|) is the isotropic spherical structure with a range of 64. The mathematical

definition of Sph,_,(|h[) is:

3
1.5 [M] —0.5{@) ,if |n| <64
Sph, e, (|| = 64 64
1 ,if ||n| > 64

||h|| is the norm of vector h.

To make sure that the result has a right variogram that we have used to build it,

variogram reproduction is checked. Figure 4.2 shows the variogram reproduction.

1.20_Variogram Reproduction

1.00_] — ————
n.eo_:
Y U.GO_:
0.40_:

0.20_]

T —
0. 20. 40. 60. 80. 100.

Lag distance (m)

Figure 4.2. Variogram reproduction the reference model generated by sgsim

Using this reference model, we can then sample randomly at n locations (n=200 for this
example) by using the draw program (Deutsch and Journel, 1998). The locations of the

200 picked points are shown in Figure 4.3.
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200 Picked Points from Reference Model
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Figure 4.3. Locations of 200 randomly picked points from reference model

Figure 4.4 shows the reference distribution which is the Gaussian distribution and also
the distribution of the 200 picked points.

Reference Model 200 Picked Ponits
0.160_| Number of Data 1048576 o 200u] Number of Data 200
mean -0.02 N mean -0.06
std. dev. 1.00 std. dav. 1.02
coef. of var undefined coef. of var undefined
maximum 509 n maximum 3.06
0.120 upper quartile 0.64 0.150_] upper quartile 0.51
median -0.03 | median 0.00
lower quartile -0.69 lower quartile -0.88
= I minimum -4.56 = minimum -2.41
= — 1 GC.
2 o.080_] g 0100
] [
w w T
0.040_| 0.050_
0.000 b : I ! 1 S . 0.000 =1 ! ! ’ [ 0
4.0 20 0.0 20 4.0 4.0 20 0.0 20 4.0

value

value

Figure 4.4. Reference Gaussian distribution (left) and the distribution of the 200 randomly
picked points (right), the values are in Gaussian units

Now the data set is constructed, the only difference of this data set with the real data set
is that we know the reference variogram model of the field for this case. Spatial bootstrap
can be used to assess uncertainty associated with variogram calculation. It gives N
realization at each location, by using N sets of data; N different experimental variograms
can be calculated, so at each lag there are N values for variogram which can be used to
make the variogram distribution at each lag, therefore the variogram uncertainty can be

quantified. Figure 4.5 shows the reference variogram and also the experimental points
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based on the 200 randomly picked points. Our goal is to quantify the uncertainty in the

variogram at the lags that the experimental variogram is calculated.

Normal Scores Semivariogram

1.60_]

1.20__

0.40_|

0.00 | .
0. 20. 40. 80. 80 100.

Distance

Figure 4.5. The Reference variogram (solid line) and the experimental variogram points based on

200 picked points (bullets), the distance is in meters (m)

By using spatial bootstrap method, different realizations (e.g. 100 realizations) can be
calculated at each of the 200 data locations. For each realization (which consists of 200
simulated values), the experimental variogram can be calculated. Therefore at each lag
distance we have 100 values (realizations) for the variogram. Figure 4.6 shows the
distribution of the experimental variogram at each lag distance and the distribution of the
variogram values at h=40. The distribution of the experimental variogram values are
plotted at each lag distance in Figure 4.7. At each lag the variance of the variogram is
calculated and it is plotted against the lag distance h. Figure 4.8 shows the plot of the

variance of the variogram from spatial bootstrap against lag distance.
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Variogram values at h=40
E Numibor of Data 100
moan (88130
20 sid. dav. 0.23167
coel. ol var 0.26267
madmum 1 58068
uppar quartile 1.04078

0.080 .| minimum 041262

Froquency

.00}

wl ‘._._H,r--

0.00 040 0.80 120 1.60

Normal Scores Semivariogram

T 1
0. 20. 40. 0. 80. 100.

Figure 4.6. Different realizations for variogram at each lag accompanying by the probability

density function at h=40
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Figure 4.7. Probability density function of the variogram values at each lag distances (see Figure

4.6), for each histogram a box plot is shown, the black dot is the reference variogram value
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Figure 4.8. Variance of the variogram versus the lag distance (m)

Below procedures are performed to find the optimum parameters for calculation of
omnidirectional variogram:

1. Using spatial bootstrap to obtain L values (realizations) for each location; e.g.
L=100.

2. Calculating experimental variogram for each realization with different tolerance

parameters (lag separation distance, tolerance ratio and the number of lags).
h=2,4,6,...,50

Tol % :%xlOO =4,8,12,...,100

MNiag :int(H]:int(mzj
2h h

3. For each calculated experimental variogram a variogram should be fitted by using
varfit program. Fitting variogram will reduce the uncertainty in the variogram.
This can be shown by using spatial bootstrap before and after variogram fitting.
At each lag distance there are 100 realizations as a result of spatial bootstrap
therefore there are 100 variogram fits for them. Figure 4.9 shows the variogram

plot before and after variogram fitting, it can be seen that the range of variation
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for the variogram values is reduced after fitting. Figure 4.10 shows the reduction

in the variance of the variogram as a result of variogram fitting.

Experimental Variogram from SB

Fitted Variogram from SB

Distance

Distance

Figure 4.9. Calculated experimental variogram for 100 realizations from Spatial Bootstrap at h=8

and hy,=4.48 (left) and the corresponding fitted variogram values (right)
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Figure 4.10. Variance of the experimental variogram (dash line) and the variance of the fitted

variogram (solid line) versus the lag distance

4. By using the fitted variogram in step 3 and the reference variogram a penalty

function, P, can be calculated by using equation 3.1.
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5. Plotting the final penalty versus the lag separation distance and the tolerance ratio.
The final penalty is the average of the penalties which are calculated in previous
step over different realizations. Figure 4.11 shows the final penalty versus the
tolerance parameters. The conditional expectation of the final penalty is plotted in

Figure 4.12.

6. Trying to find the optimum lag separation distance and the lag tolerance which
minimize the final penalty. The optimum values happen at h=18 and Tol=56 %.
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Figure 4.11. Final penalty as a function of both lag tolerance (m) and lag separation distance (m)
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Figure 4.12. Conditional expectation of the average penalty versus the unit lag distance (left) and

the tolerance ratio (right)
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Effect of number of randomly picked points and field size on optimal tolerance

parameters

The synthetic case that was presented already gives us the optimal tolerance parameters
for a certain example. But it is obvious that the optimal tolerance parameters should be
function of the field size, number of data and the reference variogram parameters (nugget
effect, range and the type of variogram model, i.e. spherical). To see the effect of number
of data and field size on optimal tolerance parameters, different cases were run with field
size of (512x512 and 1024x1024) and reference variogram parameters (isotropic 2D
spherical variogram with the nugget effect of 0.05 and the range of 64) but with different
number of randomly picked data points (n=128, 256, 512 and 1024). The reference 2D
map for 1024x1024 is the same as Figure 4.2 but for 512x512 another 2D Gaussian field
is generated by using sgsim. The reference map for this case is shown in Figure 4.13.
The variogram reproduction is checked for this case and is plotted in Figure 4.14. The
locations of the different randomly picked points are shown in Figure 4.15. To see better
the effect of number of data, for each specific number of randomly picked data points and
field size different realizations are considered. The realizations are considered by
changing the random seed number in draw program. Figure 4.16 shows four different

realizations for 256 randomly picked data points for a fixed field size of 1024.

Reference Model; [A|=512 i}

512,0 . " g 5
n 9 h - ):..

-2.00
-2.50

-3.00

Figure 4.13. Map of reference model generated by sgsim for field size of 512
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1.20_ Variogram Reproduction; field size of 512

Distance

Figure 4.14. Variogram reproduction check for the reference model with field size of 512,

distance is in meters (m)
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Figure 4.15. Locations of different number of randomly picked points

from reference model with field size of 512
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256 randomly picked data points; R1 256 randomly picked data points; R2
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Figure 4.16. Locations of 256 of randomly picked points for different realizations (256

data locations are different) from the same reference model with field size of 1024

By using the same procedure the penalty function is calculated for various tolerance
parameters. The plots of penalty function versus the lag separation distance and the
tolerance ratio are shown in Figure 4.17, these plots are for just one realization of the data
locations (one realization means that a fixed value for random seed number is used in
drawing the data points from reference model). The conditional expectation plots for the
penalty function for different number of data points and fixed field size of 1024 for
different realizations (random seed numbers) are shown in Figure 4.18. The solid line
shows the average over different realizations. The optimum tolerance parameters which
minimize the penalty function are calculated and the associated experimental variogram
and fitted variogram along with the reference variogram are plotted in Figure 4.19 for
different cases of number of randomly picked data points with a fixed field size. From
these plot it can be concluded that as number of data increases (with fixed field size) the
number of data per unit area (or volume) will increase, therefore the optimal tolerance

ratio should be decreased (Figure 4.20).
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Figure 4.17. Penalty function in the case of different number of data and a fixed field size

61



0.0,

Average Penalty vs. h; n=128 & [A[=1024

80,0
= 70.04
s
&
o
g
E 0.0}
Ed
50.0§
400 . ; .
00 10.0 200 30,0 40.0 50.0
h
a
]
o
H
<
400§
30,0 . . i X
00 10.0 200 30.0 400 500
h
ao.p_Average Penally vs. h; naS12 & |A[=1024
0.0 ]
F 60,0
3
[
&
E 50.0§
X
400
o T T T T 1
00 100 200 300 40.0 0.0
h
a0.0_Average Penalty vs. h; n=1024 & |A{=1024
70.0.] S
¥
B
g
2

! -
~ ;
P s
P iy

) T 1
00 10.0 200 30,0 40.0 50.0

Figure 4.18. Conditional expectation of the average penalty versus the unit lag distance (left) and
the tolerance ratio (right) for different number of picked points and a fixed field size of 1024, the

Average Penalty

Average Penalty

Average Panalty-1

Average Penalty-1

g0.0_Average Penalty vs. Tol %; na128 & (A[=1024

a. 20. . 60. a0, 100.
Tol%

v0.0.]

600

50.04

80.0_¢

70.0

60.04

solid line is the average over different realizations (the dashed lines)



1.20_h=5; Tol=50 % ; n=128 ; |A|=512 1.20_h=4.34 ; Tol=46.64 % .'11=25.6 s fA|=512
H 1 . L]
] . . . ] ' I
1.00 J e ® e 1.00 : * . L
1 * s 1 e T
] e ] d
0.80_] o A . 0.80 e ®
] /e - 1 p 7/
1 A 1 LIr i
0.60_] ¥ 0.60
Y W] Y o] LY
] e ] //
0.40_] /e 0.40_] /4
1 4 R a
1 7/ 1 ¢
0.20_] /,,/‘ 0.20_] /-'
1/ 1
0.00 1 2 T T T T 1 0.00 i T T T L
0. 20. 40, 80. 80, 100, o 20. 40, 60. 80. 100.
Distance Distance
1.20_h=4.25 ; Tol=40.35 % ; n=512 ; |A|=512 1.20_h=4.10 ; Tol=37.01 % ; n=1024 ; |A|=512
] .. ]
1.00_] ‘_' L -t a 1.00_] Pkl bl i
- bl -
] e . ] 2% T,
il P i i
0.80 //'/ 0.80 /'/
] M Y d
Y 0.60_] ,4' PY 0.60_] 7
] /% ] 7
7 R 2
1 ' 1
0.40_] o’ 0.40_] 2
] y 4 ] {
0.20] /f o0l 4
14 1/
1 1
0.00 T T T T 1 0.0 T T T T
0 20, 40, 60. 80. 100. 0. 20. 40, 50, 80. 100
Distance Distance

Figure 4.19. Fitted variogram (dashed line) versus the reference variogram (solid line) in the case
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optimal tolerance parameters. Dots are the experimental variogram points.
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4.2 Real example

The methodology for improving variogram calculation will be applied for Amoco data.

Amoco 2D and 3D data set are considered for implementing the methodology. The

spatial variable is the porosity of the reservoir. The 2D map of the well locations along

with the data values for porosity is shown in Figure 4.21. There are 62 wells in the

reservoir. The 2D field size of the reservoir is 10400x10400. The histogram and

cumulative distribution function of the porosity data are shown in Figure 4.22.

Frequency

0.250_3
0.200_3
D.ISD_E
O.IUO_E
0.050_3

0.000_]

Amoco Data
10000. ] ®
® 000
P @ @ g ®
s0le © o @ " o
b ® o o e o
6000._|
i ®
e © o o e o
4000._o e © ¢ © o ©®
le © e ® o
2000. _]
1e e ®e o o
0‘ pl |DI L T Ll | L] L] T | T ﬁl | |C) T T I
0. 2000. 4000. 6000. 8000. 10000.

_Amoce 2D Porosity Data

alll

20.000
-_ 18.000
_16.000
| 14.000
| 12.000
[ 10.000
| 8.000
| 6.000

| 4.000

.2.000
0.0

Figure 4.21. Location map of the 2D porosity data

Number of Data 62

mean 8.40

std. dev. 1.90
coel. of var 0.23
maximum 11.38
upper quartile 9.93
median 8.98
lower quartile 671
minimum  4.03

T

0.0 5.0

10.0

Poraosity

Cumulative Frequency

Amoco 2D Porosity Data

1.00

0.80 _-.
0.60_]
0.40_]

0.20_]

Number of Data 62
mean 8.40
std. dev. 1.90
coel. of var 0.23
maximum 11.38
upper quartile 9.93
median £.98

lower quartile 6.71
minimum  4.03

Parosity

Figure 4.22. Location map of the 2D porosity data
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The nominal spacing between data is 1320.80:

nominal spacing = \/E = /104006& =1320.80
n

The histogram and the cumulative distribution function of the minimum distance between

wells are shown in Figure 4.23.
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Figure 4.23. Distribution of the minimum distance between wells

The procedure that is considered to optimize the variogram tolerance parameters is as

below:
1. Transforming data to normal score
2. Spatial Bootstrap; L=100, there are 100 values at each well (62 wells)

3. Calculating experimental variogram for each realization for different tolerance

parameters:
h=80xilag ; ilag=12,3,...,25
Tol %=%x100=10xitol ; itol =1,2,3,...,10
A
nlagzint u =int ﬂ =int E ; ilag=12,3,...,25
2h 2x80xilag ilag

25x10x100 = 25,000 total variograms should be calculated for different tolerance

parameters.
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4. Fitting variogram by using varfit program for each calculated experimental

variogram (25,000 variograms).

5. Defining an assumed to be true variogram with spherical structure and nugget
effect of 20 % and the range of one third of the field size as a reference variogram

for calculation of the penalty function:

az%|A| — a~3500

j/(h) =0.2+0.8xSph,_s.40 (”h”)

6. Calculating penalty function for each realization and each set of tolerance

parameters. At last the penalty function should be averaged over 100 realizations.

There are total 250 points (250 different set of parameters); the plot is smoothed
by using inverse distance averaging method and shown in Figure 4.24. The

minimum of the penalty function happens at h=1098 and Tol=10 %.

The angle tolerance is also optimized. For optimization of angle tolerance, the
optimized unit lag separation distance and the lag tolerance (h=1098, hi,=109.8)
are used. In this case the average penalty function is calculated for different angle
tolerance (5, 10,... ,90 degrees). The minimum of the penalty function happens at
aw=40 degrees. Figure 4.25 shows the plot of penalty function versus the angle

tolerance.
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Figure 4.24. Plot of penalty function as a function of unit lag distance and the tolerance ratio

tolerance ratio
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For choosing the variogram model of y(h)=0.2+0.8x Sph, s ([h]), a sensitivity

analysis is performed on the selection of the nugget effect and the variogram range by
using the Amoco 2D data. First the range of correlation of the assumed to be the
reference variogram is fixed to the 30 percent of the field size and then the nugget effect
is changed from O percent to 100 percent. The plots of the penalty function for this case is
shown in Figure 4.26. In second case the nugget effect is fixed to 0 percent and now the
range of correlation of the variogram is changed from 10 percent to 100 percent of the
field size. The plot of the penalty function for this case is shown in Figure 4.27. As it can
be seen from Figure 4.26 and 4.27, the low value region for the penalty function is
approximately unchanged when the nugget effect varies from 0 percent to 30 percent and
the range of correlation (reference variogram range) varies between 10 percent and 100
percent of the field size. In the case of fixed reference variogram range and the nugget
effect between 40 percent to 100 percent, the locations of the low values are not the same
as other plots. Therefore for reference variogram range, one-third of the field size is a

reasonable value for reference variogram.

The Amoco 3D data set is also considered to obtain the optimized vertical bandwidth.
The proportional stratigraphic coordinate is used for z-direction. The stratigraphic z-
coordinate is not multiplied by the average thickness of the layer therefore it is between 0
and 1. The optimized vertical band width should be multiplied by the average thickness
to have the actual value. Other tolerance parameters are assumed to be constant when the
vertical bandwidth is optimized. They are assumed to be a reasonable value. The vertical
angle tolerance of 15 degree, the unit lag distance was considered to be the average of the
data spacing in stratigraphic coordinate (in original coordinate, since the Amoco data is
well log data, the vertical data spacing is constant but when the coordinate is transformed
stratigraphically, the data spacing varies). Figure 4.28 shows the plot of the penalty
function versus the vertical bandwidth. It can be seen from plot that the optimized

vertical bandwidth happens at 0.002 in stratigraphic unit.
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Figure 4.25. Plot of penalty function as a function of angle tolerance for Amoco 2D data set

68



as
man it iy datance o

Figure 4.26. Plot of penalty function as a function of unit lag distance and the tolerance ratio for
different nugget effect values for reference variogram model used in penalty function calculation

for Amoco 2D data; the reference variogram range is set to be 30 percent of the field size
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Figure 4.27. Plot of penalty function as a function of unit lag distance and the tolerance ratio for
different reference variogram range for variogram model used in penalty function calculation for

Amoco 2D data; the nugget effect is set to be 0 percent
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Figure 4.28. Plot of penalty function as a function of vertical bandwidth for Amoco 3D data set,
the vertical bandwidth is a value between 0 and 1 because it is in proportional stratigraphic unit

which is a fraction
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Chapter 5

Conclusion and Future Work

5.1 Optimal tolerance parameters for variogram calculation

A methodology for optimizing tolerance parameters for variogram calculation has been
proposed. The methodology is straightforward and the workflow was presented. The
optimality is defined as how close the fitted variogram to the true variogram. Basically,
the idea is to minimize the error between the fitted variogram and an assumed to be true
variogram. The assumed to be true variogram was considered to be one structure
isotropic spherical variogram with no nugget effect. A simple sensitivity on this selection
was shown. The sensitive parameters that were checked are the nugget effect (ranging
from 0 to 100 percent while the reference variogram range is constant) and the reference
variogram range (ranging from 10 percent to 100 percent of the field size while the
nugget effect is fixed). This example showed that the tolerance parameters are
approximately the same in these cases for a given data set. Based on the experimental
variogram point a variogram can be fitted and it can be compared to the assumed to be
true variogram and a penalty can be defined based on the difference between these two
variogram function. To consider better the uncertainty associated to the variogram points
a spatial bootstrap is used, then the penalty value at each set of tolerance parameters is
the averaged of the penalty values for different realizations. Spatial bootstrap uses

unconditional simulation and assumes all parameters are fixed.

Fitting the experimental variogram reduces the uncertainty in the variogram at each lag
distance. It was shown by using spatial bootstrap. After minimizing the penalty function

and getting the optimized tolerance parameters the experimental variogram should be
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calculated by using these tolerance parameters. Basically introducing tolerance
parameters in variogram calculation overestimates the range of correlation in minor
direction and underestimates the range of correlation in major direction. This amount of
underestimation or overestimation was determined analytically. The correction factor in
major, minor (in both 2D and 3D data set) and vertical direction (in 3D) should be
determined and then the lag distances should be rescaled by using these correction factors
and then refitted.

5.2 Future work

A wide variety of optimization techniques might be used for optimizing tolerance
parameters. Spatial bootstrap was presented to assess uncertainty in tolerance parameters
optimization. Conditional finite domain (CFD) approach (Babak and Deutsch, 2007) can
be used instead of spatial bootstrap to parameter the uncertainty in the statistics of interest
(i.e. penalty function). There are some limitations in using spatial bootstrap comparing to
CFD approach. First, it allows only the quantification of uncertainty of order one but
CFD approach allows the quantification of uncertainty of any order. Second, it does not
directly include the conditioning data and the size of the domain of interest into
uncertainty assessment but CFD does and thirdly it does not account for all possible data
in the area of interest but CFD does.
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Appendix A

In this appendix the proof for 3D tolerance ratio which was explained in chapter 3 will be

presented.

Tolerance ratio in 3D

Casel: h<h_ —h,

hver =

sinay,

V, (h, ay, a[Vol) is the half of the volume of the region which is inside both the sphere with

a radius of h and an elliptic cone with angles of a?,,a!, . Analytically it is,
X*+y*+z2°<h?

D:{x*cot’a’, +y’cot’a), <z° = h a, ato, Hj dxdydz
220

/T _
\x__g/ j/

i

A-1



To solve the above triple integral the coordinates should be changed to spherical
coordinates, therefore:

|p<h

; = V,(ha},ay)=||| o’ singd pdgdd
{coszecotza{;l+sin26?cot2alvolSCot2¢ 5(haw.aa) J.yp #dpdg

And finally the triple integral would be

Vo(hal.an ) =[] p?singd pd do=" (1= do
3 ! ol * ol 0 0 Op 10 ¢ SJ-O ( COS¢1)

Where ¢ should be satisfied in below equation:

1
cos® #cot’a’, +sin’Hcot’a), |2
1+cos’ @cot’ a!, +sin* Gcot® ay,

cot’ ¢ =cos’ fcot’ @, +sin*Hcot’a), = COsg, =(

Therefore the formula for the volume becomes:

vy (h,ay.ay) =2§[1— 1 (a3 |0°

Where:

1
cos’@cot’ @), +sin*Acot’a), |2 do
1+cos® @cot® a), +sin*dcot’ a),

Il(atrclnl’at\gl ) :%johcosﬂde :i 2”(

2790
The tolerance ratio is defined as the

Vs(h_{—htol’atrt])l'at\gl)_VB(h_hol'atZI’a[\;I)

Tol % =
v (2h)
B [ (-]
%”(zh)s
1"1 atrt])l'at\i)l 3h2+htil htol h v ol ol ‘
S 4);3[ | :i[l—ll(am.,am.)][h;]j{?ﬁ(h;]” =

Case Il: h, +h,<h<h_  —h,

A-2



V, (h.b,,,ay ) is the volume of the region within the sphere with a radius of a h and the

shape with a cross section of an ellipse, one of the main axis of this ellipse has a constant
length of b, . Analytically it is,
X +y*+22<h?

2,2

D : XZ COtZ atr(])I + 3:3 : < ZZ = 1 ver ! atO' J-J.J. dXdde

2 =
ver

z>0

V ( ! ver’a(ol) V1*+V2*

" cosa, h? 2 gh zsin(2 h
Vl - joh ) ﬂ-bverz tan atr:)IdZ = ﬂ-bver tan atT)I COZS atOI = E‘- atOI ) bverhz

V2 ; |:V Velllptlc cylinder (

B, hsinal,, 2ncosaly )| = 5[V -2, sinal cosal’]

*

\% ( ' ver’anI) ﬂ-Sin(Za(TJI)b h2
2 2 ver

*

\ ( ! ver’atol) ”Sin(zatr:)l)b h2
2 4 ver

= V( ! ver’atol)

Where V ( , Ver,aml)ls the volume within the region inside both of the elliptic cylinder

(with minor and major axis ofb,, ,hsina;, ) and the sphere with a radius of h.

ver !

Analytically it is:
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X +y*+z2°<h?
D: X2 y2 <1 = ver a'tol J-J.J. dXdde
h*sin®a), "oz

ver

In cylindrical coordinates it reduces to

D:{r’< g & V'(hhb,.ay) J}! rdzdrdd =

+
h*sin*a), b’

ver

V'(h.b,.ay) j2”I1j1 rdzdrde

-1

2 . >
Where z, =vh*—r?and r, =(h2CC-)529h + SISZ Hj , therefore;
SIn“ 8y,

ver

L IZH rdzdrdg =2 ["rzdrdo=2["["rvh* ~r*drde
:2[5”[%(%—#)2} dezgjo”[ht(hz—rf)z}de
0

- V*(h,bver,at2|)=4?”[l— 2 (M bier am)]

where

2 2
. ) . csc’ ay, (:0526'+bh2 sin®0-1
2z 2r
1,(hb,.a" )= ["|1-| 2| | dog=— do
2 ver ol 272_ 0 h 272_ 0 hz
csc’ ag, €os” @ +-——sin’

ver

By knowingV " (h,h,,, &y, ), the formula for V, (h,h,,, &} ) reduces to

( ver ! a(ol) ﬂSin(zatT)l)bverhz
2 4

2 zsin(2a)
:?ﬂ-[l_ ( ver ! atol):| h - E]_ I)b h?

ver

Vi (b, 3 ) =
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The tolerance ratio is defined as the

V4 (h+ |"Ilol’L-)ver’a‘tzl)_vzl (h_lﬂltol'bver’atzl)
v (2h)

Tol % =

Case IlI: h\jer_l’]tol <h£h:er+htol

Vs(h:er’atgl’at\i)l) (h htol a‘tol a'tol)—i_v (h+htol ver? a‘tol) (hver ver ! a'tol)
v(2h)

Tol % =

Case IV: h>h  +h

The interested volume in this case can be derived by using the formula forV. (h b...b ) :

hor ' ~ver

but instead of using the cota, andcota, , we can use the equivalent of them in terms of

the bandwidth which are equal to Land Lrespectively.

hor ver

2
Vs (D, bor b ) = ;[ 2 (DB b ) |

hor * ver

Where
h? h? g
1 bTcos 0+—-sin*6-1
(hb ’b ) i hor ver de
hor 1 ~ver 272_ h2 h2
—cos 0+—sm 0
hor ver

The tolerance ratio is defined as the

(h+htol’ hor 1 ver) (h |"Ilol’ hor ! ver)
v(2h)

Tol % =

Case V: h, —h, <h<h, +h,

(hhor’ ver’a‘tol) (h htol’bver’a‘tol)-i_v (h+htol’ hor ? ver) (hhor’bhor’bver)
V (2h)

Tol % =
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